In computer science, a level set is a data structure designed to represent discretely sampled dynamic level sets of functions.
A common use of this form of data structure is in efficient image rendering. The underlying method constructs a signed distance field that extends from the boundary, and can be used to solve the motion of the boundary in this field.
The powerful level-set method is due to Osher and Sethian 1988. [1] However, the straightforward implementation via a dense d-dimensional array of values, results in both time and storage complexity of , where is the cross sectional resolution of the spatial extents of the domain and is the number of spatial dimensions of the domain.
The narrow band level set method, introduced in 1995 by Adalsteinsson and Sethian, [2] restricted most computations to a thin band of active voxels immediately surrounding the interface, thus reducing the time complexity in three dimensions to for most operations. Periodic updates of the narrowband structure, to rebuild the list of active voxels, were required which entailed an operation in which voxels over the entire volume were accessed. The storage complexity for this narrowband scheme was still Differential constructions over the narrow band domain edge require careful interpolation and domain alteration schemes to stabilise the solution. [3]
This time complexity was eliminated in the approximate "sparse field" level set method introduced by Whitaker in 1998. [4] The sparse field level set method employs a set of linked lists to track the active voxels around the interface. This allows incremental extension of the active region as needed without incurring any significant overhead. While consistently efficient in time, storage space is still required by the sparse field level set method. See [5] for implementation details.
The sparse block grid method, introduced by Bridson in 2003, [6] divides the entire bounding volume of size into small cubic blocks of voxels each. A coarse grid of size then stores pointers only to those blocks that intersect the narrow band of the level set. Block allocation and deallocation occur as the surface propagates to accommodate to the deformations. This method has a suboptimal storage complexity of , but retains the constant time access inherent to dense grids.
The octree level set method, introduced by Strain in 1999 [7] and refined by Losasso, Gibou and Fedkiw, [8] and more recently by Min and Gibou [9] uses a tree of nested cubes of which the leaf nodes contain signed distance values. Octree level sets currently require uniform refinement along the interface (i.e. the narrow band) in order to obtain sufficient precision. This representation is efficient in terms of storage, and relatively efficient in terms of access queries, An advantage of the level method on octree data structures is that one can solve the partial differential equations associated with typical free boundary problems that use the level set method. The CASL research group [10] has developed this line of work in computational materials, computational fluid dynamics, electrokinetics, image guided surgery and controls.
The run-length encoding (RLE) level set method, introduced in 2004, [11] applies the RLE scheme to compress regions away from the narrow band to just their sign representation while storing with full precision the narrow band. The sequential traversal of the narrow band is optimal and storage efficiency is further improved over the octree level set. The addition of an acceleration lookup table allows for fast random access, where r is the number of runs per cross section. Additional efficiency is gained by applying the RLE scheme in a dimensional recursive fashion, a technique introduced by Nielsen & Museth's similar DT-Grid. [12]
The Hash Table Local Level Set method, introduced in 2011 by Eyiyurekli and Breen [13] and extended in 2012 by Brun, Guittet and Gibou, [14] only computes the level set data in a band around the interface, as in the Narrow Band Level-Set Method, but also only stores the data in that same band. A hash table data structure is used, which provides an access to the data. However, Brun et al. conclude that their method, while being easier to implement, performs worse than a quadtree implementation. They find that
as it is, [...] a quadtree data structure seems more adapted than the hash table data structure for level-set algorithms.
Three main reasons for worse efficiency are listed:
This section needs expansion. You can help by adding to it. (December 2009) |
Corbett in 2005 [15] introduced the point-based level set method. Instead of using a uniform sampling of the level set, the continuous level set function is reconstructed from a set of unorganized point samples via moving least squares.
A hash function is any function that can be used to map data of arbitrary size to fixed-size values, though there are some hash functions that support variable-length output. The values returned by a hash function are called hash values, hash codes, hash digests, digests, or simply hashes. The values are usually used to index a fixed-size table called a hash table. Use of a hash function to index a hash table is called hashing or scatter-storage addressing.
In computer science, a hash table is a data structure that implements an associative array, also called a dictionary or simply map; an associative array is an abstract data type that maps keys to values. A hash table uses a hash function to compute an index, also called a hash code, into an array of buckets or slots, from which the desired value can be found. During lookup, the key is hashed and the resulting hash indicates where the corresponding value is stored. A map implemented by a hash table is called a hash map.
In computer science, an associative array, map, symbol table, or dictionary is an abstract data type that stores a collection of pairs, such that each possible key appears at most once in the collection. In mathematical terms, an associative array is a function with finite domain. It supports 'lookup', 'remove', and 'insert' operations.
In computer science, a perfect hash functionh for a set S is a hash function that maps distinct elements in S to a set of m integers, with no collisions. In mathematical terms, it is an injective function.
A randomized algorithm is an algorithm that employs a degree of randomness as part of its logic or procedure. The algorithm typically uses uniformly random bits as an auxiliary input to guide its behavior, in the hope of achieving good performance in the "average case" over all possible choices of random determined by the random bits; thus either the running time, or the output are random variables.
In computer science, a graph is an abstract data type that is meant to implement the undirected graph and directed graph concepts from the field of graph theory within mathematics.
Sparse grids are numerical techniques to represent, integrate or interpolate high dimensional functions. They were originally developed by the Russian mathematician Sergey A. Smolyak, a student of Lazar Lyusternik, and are based on a sparse tensor product construction. Computer algorithms for efficient implementations of such grids were later developed by Michael Griebel and Christoph Zenger.
In computing, a persistent data structure or not ephemeral data structure is a data structure that always preserves the previous version of itself when it is modified. Such data structures are effectively immutable, as their operations do not (visibly) update the structure in-place, but instead always yield a new updated structure. The term was introduced in Driscoll, Sarnak, Sleator, and Tarjan's 1986 article.
An octree is a tree data structure in which each internal node has exactly eight children. Octrees are most often used to partition a three-dimensional space by recursively subdividing it into eight octants. Octrees are the three-dimensional analog of quadtrees. The word is derived from oct + tree. Octrees are often used in 3D graphics and 3D game engines.
A space–time trade-off, also known as time–memory trade-off or the algorithmic space-time continuum in computer science is a case where an algorithm or program trades increased space usage with decreased time. Here, space refers to the data storage consumed in performing a given task, and time refers to the time consumed in performing a given task.
An isosurface is a three-dimensional analog of an isoline. It is a surface that represents points of a constant value within a volume of space; in other words, it is a level set of a continuous function whose domain is 3-space.
The Level-set method (LSM) is a conceptual framework for using level sets as a tool for numerical analysis of surfaces and shapes. LSM can perform numerical computations involving curves and surfaces on a fixed Cartesian grid without having to parameterize these objects. LSM makes it easier to perform computations on shapes with sharp corners and shapes that change topology. These characteristics make LSM effective for modeling objects that vary in time, such as an airbag inflating or a drop of oil floating in water.
In mathematical analysis and computer science, functions which are Z-order, Lebesgue curve, Morton space-filling curve, Morton order or Morton code map multidimensional data to one dimension well preserving locality of the data points. It is named in France after Henri Lebesgue, who studied it in 1904, and named in the United States after Guy Macdonald Morton, who first applied the order to file sequencing in 1966. The z-value of a point in multidimensions is simply calculated by interleaving the binary representations of its coordinate values. Once the data are sorted into this ordering, any one-dimensional data structure can be used, such as simple one dimensional arrays, binary search trees, B-trees, skip lists or hash tables. The resulting ordering can equivalently be described as the order one would get from a depth-first traversal of a quadtree or octree.
In computing, a cache-oblivious algorithm is an algorithm designed to take advantage of a processor cache without having the size of the cache as an explicit parameter. An optimal cache-oblivious algorithm is a cache-oblivious algorithm that uses the cache optimally. Thus, a cache-oblivious algorithm is designed to perform well, without modification, on multiple machines with different cache sizes, or for a memory hierarchy with different levels of cache having different sizes. Cache-oblivious algorithms are contrasted with explicit loop tiling, which explicitly breaks a problem into blocks that are optimally sized for a given cache.
In mathematics and its applications, the signed distance function or signed distance field (SDF) is the orthogonal distance of a given point x to the boundary of a set Ω in a metric space, with the sign determined by whether or not x is in the interior of Ω. The function has positive values at points x inside Ω, it decreases in value as x approaches the boundary of Ω where the signed distance function is zero, and it takes negative values outside of Ω. However, the alternative convention is also sometimes taken instead. The concept also sometimes goes by the name oriented distance function/field.
James Albert Sethian is a professor of mathematics at the University of California, Berkeley and the head of the Mathematics Group at the United States Department of Energy's Lawrence Berkeley National Laboratory.
In computer vision and computer graphics, 3D reconstruction is the process of capturing the shape and appearance of real objects. This process can be accomplished either by active or passive methods. If the model is allowed to change its shape in time, this is referred to as non-rigid or spatio-temporal reconstruction.
In computational fluid dynamics, the volume of fluid (VOF) method is a family of free-surface modelling techniques, i.e. numerical techniques for tracking and locating the free surface. They belong to the class of Eulerian methods which are characterized by a mesh that is either stationary or is moving in a certain prescribed manner to accommodate the evolving shape of the interface. As such, VOF methods are advection schemes capturing the shape and position of the interface, but are not standalone flow solving algorithms. The Navier–Stokes equations describing the motion of the flow have to be solved separately.
A sparse voxel octree (SVO) is a 3D computer graphics rendering technique using a raycasting or sometimes a ray tracing approach into an octree data representation.