Levinsonite-(Y)

Last updated
Levinsonite-(Y)
General
Category Mineral
Formula
(repeating unit)
(empirical) Y0.3Nd0.2La0.1Sm0.1Gd0.1Al(SO4)2(C2O4)·12(H2O)
Strunz classification 10.AB.70
Dana classification 50.01.09.03
Crystal system monoclinic
Identification
Colourcolourless
Crystal habit prismatic
Fracture brittle, irregular
Luster vitreous
Streak white
Density 2.09

Levinsonite-(Y) is a rare organic mineral named in honor of Alfred A. Levinson (1927-2005), professor of mineralogy at the University of Calgary. It was named in part because of his origination of the internationally used nomenclature for rare-earth minerals, the Levinson modifier, [1] which is a standard in mineralogical nomenclature and allows for the more precise identification and classification of rare-earth minerals. [2]

The type material for Levinsonite-(Y) is kept at the University of Michigan, and the Smithsonian National Museum of Natural History in Washington, D.C. [3]

Discovery

In 1981, T. Dennis Coskren and Robert J. Lauf began investigating a large number of unusual minerals at the Alum Cave Bluff (ACB), Great Smoky Mountains National Park, Tennessee, USA. [2] [4] Coskren and Lauf discovered three new rare-earth element minerals, which have subsequently been named coskrenite-(Ce), levinsonite-(Y), and zugshunstite-(Ce). After submission to the International Mineralogical Association (IMA), the naming of Levinsonite-(Y) was approved by the Commission on New Minerals and Mineral Names and given the IMA number 1996-057. [5]

Related Research Articles

<span class="mw-page-title-main">Gadolinite</span> Nesosilicate mineral

Gadolinite, sometimes known as ytterbite, is a silicate mineral consisting principally of the silicates of cerium, lanthanum, neodymium, yttrium, beryllium, and iron with the formula (Ce,La,Nd,Y)2FeBe2Si2O10. It is called gadolinite-(Ce) or gadolinite-(Y), depending on the prominent composing element. It may contain 35.5% yttria sub-group rare earths, 2.2% ceria earths, as much as to 11.6% BeO, and traces of thorium. It is found in Sweden, Norway, and the US.

<span class="mw-page-title-main">Bastnäsite</span> Family of minerals

The mineral bastnäsite (or bastnaesite) is one of a family of three carbonate-fluoride minerals, which includes bastnäsite-(Ce) with a formula of (Ce, La)CO3F, bastnäsite-(La) with a formula of (La, Ce)CO3F, and bastnäsite-(Y) with a formula of (Y, Ce)CO3F. Some of the bastnäsites contain OH instead of F and receive the name of hydroxylbastnasite. Most bastnäsite is bastnäsite-(Ce), and cerium is by far the most common of the rare earths in this class of minerals. Bastnäsite and the phosphate mineral monazite are the two largest sources of cerium and other rare-earth elements.

<span class="mw-page-title-main">Eudialyte</span> Cyclosilicate mineral

Eudialyte, whose name derives from the Greek phrase Εὖ διάλυτος, eu dialytos, meaning "well decomposable", is a somewhat rare, nine-member-ring cyclosilicate mineral, which forms in alkaline igneous rocks, such as nepheline syenites. Its name alludes to its ready solubility in acid.

<span class="mw-page-title-main">Lanthanite</span> Group of isostructural rare earth element carbonate minerals

Lanthanites are a group of isostructural rare earth element (REE) carbonate minerals. This group comprises the minerals lanthanite-(La), lanthanite-(Ce), and lanthanite-(Nd). This mineral group has the general chemical formula of (REE)2(CO3)3·8(H2O). Lanthanites include La, Ce, and Nd as major elements and often contain subordinate amounts of other REEs including praseodymium (Pr), samarium (Sm), europium (Eu) and dysprosium (Dy). The lanthanite crystal structure consists of layers of 10-fold coordinated REE-oxygen (O) polyhedra and carbonate (CO32−) groups connected by hydrogen bonds to interlayer water molecules, forming a highly hydrated structure.

<span class="mw-page-title-main">Phosphate mineral</span> Nickel–Strunz 9 ed mineral class number 8 (isolated tetrahedral units, mainly)

Phosphate minerals are minerals that contain the tetrahedrally coordinated phosphate anion, sometimes with arsenate and vanadate substitutions, along with chloride (Cl), fluoride (F), and hydroxide (OH) anions, that also fit into the crystal structure.

<span class="mw-page-title-main">Carbonate mineral</span> Minerals containing the carbonate ion

Carbonate minerals are those minerals containing the carbonate ion, CO2−
3
.

<i>Agardite</i> Mineral group

Agardite is a mineral group consisting of agardite-(Y), agardite-(Ce), agardite-(Nd), and agardite-(La). They comprise a group of minerals that are hydrous hydrated arsenates of rare-earth elements (REE) and copper, with the general chemical formula (REE,Ca)Cu6(AsO4)3(OH)6·3H2O. Yttrium, cerium, neodymium, lanthanum, as well as trace to minor amounts of other REEs, are present in their structure. Agardite-(Y) is probably the most often found representative. They form needle-like yellow-green (variably hued) crystals in the hexagonal crystal system. Agardite minerals are a member of the mixite structure group, which has the general chemical formula Cu2+6A(TO4)3(OH)6·3H2O, where A is a REE, Al, Ca, Pb, or Bi, and T is P or As. In addition to the four agardite minerals, the other members of the mixite mineral group are calciopetersite, goudeyite, mixite, petersite-(Ce), petersite-(Y), plumboagardite, and zálesíite.

<span class="mw-page-title-main">Thaumasite</span> Complex calcium silicate hydrate mineral

Thaumasite is a calcium silicate mineral, containing Si atoms in unusual octahedral configuration, with chemical formula Ca3Si(OH)6(CO3)(SO4)·12H2O, also sometimes more simply written as CaSiO3·CaCO3·CaSO4·15H2O.

<span class="mw-page-title-main">Sodium alum</span> Inorganic compound

Sodium aluminium sulfate is the inorganic compound with the chemical formula NaAl(SO4)2·12H2O (sometimes written Na2SO4·Al2(SO4)3·24H2O). Also known as soda alum, sodium alum, or SAS, this white solid is used in the manufacture of baking powder and as a food additive. Its official mineral name is alum-Na (IMA symbol: Aum-Na).

<span class="mw-page-title-main">Halide mineral</span> Minerals with a dominant fluoride, chloride, bromide, or iodide anion

Halide minerals are those minerals with a dominant halide anion. Complex halide minerals may also have polyatomic anions.

<span class="mw-page-title-main">Sulfate mineral</span> Class of minerals that include the sulfate ion

The sulfate minerals are a class of minerals that include the sulfate ion within their structure. The sulfate minerals occur commonly in primary evaporite depositional environments, as gangue minerals in hydrothermal veins and as secondary minerals in the oxidizing zone of sulfide mineral deposits. The chromate and manganate minerals have a similar structure and are often included with the sulfates in mineral classification systems.

<span class="mw-page-title-main">Dollaseite-(Ce)</span> Epidote supergroup, sorosilicate mineral

Dollaseite-(Ce) is a sorosilicate end-member epidote rare-earth mineral which was discovered by Per Geijer (1927) in the Ostanmossa mine, Norberg district, Sweden. Dollaseite-(Ce), although not very well known, is part of a broad epidote group of minerals which are primarily silicates, the most abundant type of minerals on earth. Dollaseite-(Ce) forms as dark-brown subhedral crystals primarily in Swedish mines. With the ideal chemical formula, CaREE3+
Mg
2
AlSi
3
O
11
,(OH)F
, dollaseite-(Ce) can be partially identified by its content of the rare earth element cerium.

<span class="mw-page-title-main">Wakefieldite</span> Rare-earth mineral series

Wakefieldite is an uncommon rare-earth element vanadate mineral. There are four main types described of wakefieldite- wakefieldite-(La), wakefieldite-(Ce), wakefieldite-(Nd), and wakefieldite-(Y), depending upon the dominant rare-earth metal ion present. Wakefieldite has a Mohs hardness ranging from 4 to 5. Wakefieldite forms crystals of tetragonal structure. In terms of crystal structure, it is the vanadate analog of the rare-earth phosphate mineral xenotime. Unlike xenotime, it is more favorable for wakefieldite to contain the lighter rare-earth elements over the heavier ones. Due to the lanthanide contraction, the heavier rare earths have smaller ionic radii than the lighter ones. When the phosphate anion is replaced by the larger vanadate anion, the tetragonal crystal system preferentially accommodates the larger light rare-earth elements.

This list gives an overview of the classification of non-silicate minerals and includes mostly International Mineralogical Association (IMA) recognized minerals and its groupings. This list complements the List of minerals recognized by the International Mineralogical Association series of articles and List of minerals. Rocks, ores, mineral mixtures, not IMA approved minerals, not named minerals are mostly excluded. Mostly major groups only, or groupings used by New Dana Classification and Mindat.

This list gives an overview of the classification of minerals (silicates) and includes mostly International Mineralogical Association (IMA) recognized minerals and its groupings. This list complements the List of minerals recognized by the International Mineralogical Association series of articles and List of minerals. Rocks, ores, mineral mixtures, non-IMA approved minerals and non-named minerals are mostly excluded.

Tranquillityite is silicate mineral with formula (Fe2+)8Ti3Zr2 Si3O24. It is mostly composed of iron, oxygen, silicon, zirconium and titanium with smaller fractions of yttrium and calcium. It is named after the Mare Tranquillitatis (Sea of Tranquility), the place on the Moon where the rock samples were found during the 1969 Apollo 11 mission. It was the last mineral brought from the Moon which was thought to be unique, with no counterpart on Earth, until it was discovered in Australia in 2011.

Oxalate sulfates are mixed anion compounds containing oxalate and sulfate. They are mostly transparent, and any colour comes from the cations.

References

  1. Burke, Ernst A.J. (2008). ""Tidying up mineral names: an IMA-CNMNC scheme for suffixes, hyphens and diacritical marks"". Mineralogical Record. 39 (2): 131–135.
  2. 1 2 Rouse, R. C.; Peacor, D. R.; Essene, E. J.; Coskren, T. D.; Lauf, R. J. (2001-04-01). "The new minerals levinsonite-(Y) [(Y, Nd,Ce)Al(SO4)2(C2O4) · 12H2O] and zugshunstite-(Ce) [(Ce,Nd,La)Al(SO4)2(C2O4) · 12H2O]: Coexisting oxalates with different structures and differentiation of LREE and HREE1>". Geochimica et Cosmochimica Acta. 65 (7): 1101–1115. doi:10.1016/S0016-7037(00)00568-8. ISSN   0016-7037.
  3. "Levinsonite-(Y) at The Handbook of Mineralogy" (PDF). Retrieved 2024-10-24.
  4. "Levinsonite-(Y) Mineral Data". webmineral.com. Retrieved 2024-09-18.
  5. https://www.mindat.org/min-7024.html