Organic mineral

Last updated
Mellite gemstone from Hungary MELLITE Taillee Hongrie.jpg
Mellite gemstone from Hungary

An organic mineral is an organic compound in mineral form. An organic compound is any compound containing carbon, aside from some simple ones discovered before 1828. There are three classes of organic mineral: hydrocarbons (containing just hydrogen and carbon), salts of organic acids, and miscellaneous. Organic minerals are rare, and tend to have specialized settings such as fossilized cacti and bat guano. Mineralogists have used statistical models to predict that there are more undiscovered organic mineral species than known ones.

Contents

Definition

In general, an organic compound is defined as any compound containing carbon, but some compounds are excepted for historical reasons. Before 1828, chemists thought that organic and inorganic compounds were fundamentally different, with the former requiring a vital force that could only come from living organisms. Then Friedrich Wöhler synthesized urea by heating an inorganic substance called ammonium cyanate, proving that organic compounds could also be created through an inorganic process. Nevertheless, carbon-containing compounds that were already classified as inorganic were not reclassified. These include carbides, simple oxides of carbon such as carbon monoxide and carbon dioxide, carbonates, cyanides and elemental carbon minerals such as graphite and diamond. [1] [2]

Organic minerals are rare and difficult to find, often forming crusts on fractures. [1] [2] Early descriptions of organic minerals include mellite in 1793, humboldtine in 1821 and idrialite in 1832. [1] [2]

Types of organic mineral

In the proposed 10th edition of the Nickel-Strunz classification, [3] organic minerals are one of the ten primary classes of minerals. The class is divided into three subclasses: salts of organic acids, hydrocarbons, and miscellaneous organic minerals. [4]

Hydrocarbons

Blue fluorescence in a carpathite mineral under ultraviolet light. Pierre-img 0579.jpg
Blue fluorescence in a carpathite mineral under ultraviolet light.

As the name implies, hydrocarbon minerals are composed entirely of carbon and hydrogen. Some are inorganic forms of polycyclic aromatic hydrocarbon (PAH) compounds. For example, a rare mineral known as either carpathite, karpatite or pendletonite is nearly pure coronene. Carpathite is deposited as pale yellow flakes in cracks between diorite (an igneous rock) and argillite (a sedimentary rock); it is prized for a beautiful blue fluorescence under ultraviolet light. [5] Other PAH compounds appearing as minerals include fluorene as kratochvilite; and anthracene as ravatite. [5] [6] [7] Others are mixtures: curtisite contains several PAH compounds, including dibenzofluorine, picene, and chrysene, while the most common components of idrialite are tribenzofluorenes. [6] One theory for their formation involves burial of PAH compounds until they reach a temperature where pyrolysis can occur, followed by hydrothermal transport towards the surface, during which the composition of minerals that precipitate out depends on the temperature. [6]

Salts of organic acids

A salt of an organic acid is a compound in which an organic acid is combined with a base. The largest such group is the oxalates, which combine C2O2−4 with cations. A large fraction have water molecules attached; examples include weddellite, whewellite, and zhemchuzhnikovite. Oxalates are often associated with particular fossilized biological materials, for example weddellite with cacti; oxammite with guano and egg shells of birds; glushinskite with lichen; humboldtine, stepanovite and whewellite with leaf litter; and humboldtine, stepanovite and whewellite with coal. Where plant material such as tree roots interacts with ore bodies, one can find oxalates with transition metals (moolooite, wheatleyite). [7]

Other salts include salts of formate (HCOO) such as formicaite and dashkovaite; and salts of acetate (CH3COO) such as acetamide and calclacite. [7] Joanneumite is the first isocyanurate mineral to be officially recognized. [8]

Miscellaneous organic compounds

Some organic minerals do not fall into the above categories. These include nickel porphyrin (NiC31H32N4), closely related to biological molecules such as heme (a porphyrin with iron as the cation) and chlorophyll (a magnesium cation), but does not itself occur in biological systems. Instead, it is found on the surface of fractures in oil shales. [7] Urea derived from bat guano and urine also occurs as a mineral in very arid conditions. [2] In the Dana and Strunz classifications, amber is considered an organic mineral, but this classification is not approved by the International Mineralogical Association (IMA). [9] Other sources call it a mineraloid because it has no crystal structure. [10]

Type of Carbon Mineral

As of 2016, the IMA recognized ten hydrocarbon minerals, ten miscellaneous organic minerals, 21 oxalates and over 24 other salts of organic acids. [2] [3] However, Robert Hazen and colleagues analyzed the known species of carbon-bearing minerals using a statistical technique called the Large Number of Rare Events (LNRE) model, and predicted that at least 145 such minerals are yet to be discovered. Many undiscovered organic minerals may be related to known species by various substitutions of cations. Hazen et al. predict that at least three more PAH crystals (pyrene, chrysene and tetracene) should occur as minerals. There are 72 known synthetic oxalates, some of which could occur in nature, particularly near fossil organisms. [7] To encourage the discovery of more carbon minerals, the Deep Carbon Observatory launched an initiative known as the Carbon Mineral Challenge. [11]

See also

Related Research Articles

<span class="mw-page-title-main">Aromatic compound</span> Compound containing rings with delocalized pi electrons

Aromatic compounds or arenes are organic compounds "with a chemistry typified by benzene" and "cyclically conjugated." The word "aromatic" originates from the past grouping of molecules based on odor, before their general chemical properties were understood. The current definition of aromatic compounds does not have any relation to their odor. Aromatic compounds are now defined as cyclic compounds satisfying Hückel's Rule. Aromatic compounds have the following general properties:

<span class="mw-page-title-main">Anthracene</span> Chemical compound

Anthracene is a solid polycyclic aromatic hydrocarbon (PAH) of formula C14H10, consisting of three fused benzene rings. It is a component of coal tar. Anthracene is used in the production of the red dye alizarin and other dyes. Anthracene is colorless but exhibits a blue (400–500 nm peak) fluorescence under ultraviolet radiation.

<span class="mw-page-title-main">Phenanthrene</span> Polycyclic aromatic hydrocarbon composed of three fused benzene rings

Phenanthrene is a polycyclic aromatic hydrocarbon (PAH) with formula C14H10, consisting of three fused benzene rings. It is a colorless, crystal-like solid, but can also appear yellow. Phenanthrene is used to make dyes, plastics, pesticides, explosives, and drugs. It has also been used to make bile acids, cholesterol and steroids.

<span class="mw-page-title-main">Coronene</span> Chemical compound

Coronene is a polycyclic aromatic hydrocarbon (PAH) comprising seven peri-fused benzene rings. Its chemical formula is C
24
H
12
. It is a yellow material that dissolves in common solvents including benzene, toluene, and dichloromethane. Its solutions emit blue light fluorescence under UV light. It has been used as a solvent probe, similar to pyrene.

<span class="mw-page-title-main">Polycyclic aromatic hydrocarbon</span> Hydrocarbon composed of multiple aromatic rings

A polycyclic aromatic hydrocarbon (PAH) is a class of organic compounds that is composed of multiple aromatic rings. The simplest representative is naphthalene, having two aromatic rings, and the three-ring compounds anthracene and phenanthrene. PAHs are uncharged, non-polar and planar. Many are colorless. Many of them are found in coal and in oil deposits, and are also produced by the incomplete combustion of organic matter—for example, in engines and incinerators or when biomass burns in forest fires.

Simple aromatic rings, also known as simple arenes or simple aromatics, are aromatic organic compounds that consist only of a conjugated planar ring system. Many simple aromatic rings have trivial names. They are usually found as substructures of more complex molecules. Typical simple aromatic compounds are benzene, indole, and pyridine.

<span class="mw-page-title-main">Triphenylene</span> Chemical compound

Triphenylene is an organic compound with the formula (C6H4)3. A flat polycyclic aromatic hydrocarbon (PAH), it consists of four fused benzene rings. Triphenylene has delocalized 18-π-electron systems based on a planar structure, corresponding to the symmetry group D3h. It is a white or colorless solid.

<span class="mw-page-title-main">Abelsonite</span> Organic mineral, a nickel porphyrine derivative

Abelsonite is a nickel porphyrin mineral with chemical formula C31H32N4Ni. It was discovered in 1969 in the U.S. State of Utah and described in 1975. The mineral is named after geochemist Philip H. Abelson. It is the only known crystalline geoporphyrin.

<span class="mw-page-title-main">Mellitic acid</span> Chemical compound

Mellitic acid, also called graphitic acid or benzenehexacarboxylic acid, is an acid first discovered in 1799 by Martin Heinrich Klaproth in the mineral mellite (honeystone), which is the aluminium salt of the acid. It crystallizes in fine silky needles and is soluble in water and alcohol.

<span class="mw-page-title-main">Idrialite</span>

Idrialite is a rare hydrocarbon mineral with approximate chemical formula C22H14.

<span class="mw-page-title-main">Fluoranthene</span> Chemical compound

Fluoranthene is a polycyclic aromatic hydrocarbon (PAH). The molecule can be viewed as the fusion of naphthalene and benzene unit connected by a five-membered ring. The chemical formula is C16H10. Although samples are often pale yellow, the compound is colorless. It is soluble in nonpolar organic solvents. It is a member of the class of PAHs known as non-alternant PAHs because it has rings other than those with six carbon atoms. It is a structural isomer of the alternant PAH pyrene. It is not as thermodynamically stable as pyrene. Its name is derived from its fluorescence under UV light.

<span class="mw-page-title-main">Cyclic compound</span> Molecule with a ring of bonded atoms

A cyclic compound is a term for a compound in the field of chemistry in which one or more series of atoms in the compound is connected to form a ring. Rings may vary in size from three to many atoms, and include examples where all the atoms are carbon, none of the atoms are carbon, or where both carbon and non-carbon atoms are present. Depending on the ring size, the bond order of the individual links between ring atoms, and their arrangements within the rings, carbocyclic and heterocyclic compounds may be aromatic or non-aromatic; in the latter case, they may vary from being fully saturated to having varying numbers of multiple bonds between the ring atoms. Because of the tremendous diversity allowed, in combination, by the valences of common atoms and their ability to form rings, the number of possible cyclic structures, even of small size numbers in the many billions.

<span class="mw-page-title-main">PAH world hypothesis</span> Hypothesis about the origin of life

The PAH world hypothesis is a speculative hypothesis that proposes that polycyclic aromatic hydrocarbons (PAHs), known to be abundant in the universe, including in comets, and assumed to be abundant in the primordial soup of the early Earth, played a major role in the origin of life by mediating the synthesis of RNA molecules, leading into the RNA world. However, as yet, the hypothesis is untested.

<span class="mw-page-title-main">Carpathite</span> Very rare organic mineral

Carpathite is a very rare hydrocarbon mineral, consisting of exceptionally pure coronene (C24H12), a polycyclic aromatic hydrocarbon. The name has been spelled karpatite and the mineral was improperly renamed pendletonite.

<span class="mw-page-title-main">Chrysene</span> Chemical compound

Chrysene is a polycyclic aromatic hydrocarbon (PAH) with the molecular formula C
18
H
12
that consists of four fused benzene rings. It is a natural constituent of coal tar, from which it was first isolated and characterized. It is also found in creosote at levels of 0.5–6 mg/kg.

<span class="mw-page-title-main">Iron(II) oxalate</span> Chemical compound

Ferrous oxalate (iron(II) oxalate) are inorganic compound with the formula FeC2O4(H2O)x where x is 0 or 2. These are orange compounds, poorly soluble in water.

Dibenz(<i>a</i>,<i>j</i>)anthracene Chemical compound

Dibenz[a,j]anthracene or Benzo[m]tetraphene or 1,2:7,8-Dibenzanthracene is an organic compound with the chemical formula C22H14. It belongs to the class of polycyclic aromatic hydrocarbons (PAHs) and is formed whenever there is incomplete combustion of organic matter. The IARC (International Agency for Research on Cancer) has classified it as possibly carcinogenic to humans, grouped into IARC group 2B.

<span class="mw-page-title-main">Ammonium oxalate</span> Chemical compound

Ammonium oxalate is a chemical compound with the chemical formula [NH4]2C2O4. Its formula is often written as (NH4)2C2O4 or (COONH4)2. It is an ammonium salt of oxalic acid. It consists of ammonium cations ([NH4]+) and oxalate anions (C2O2−4). The structure of ammonium oxalate is ([NH4]+)2[C2O4]2−. Ammonium oxalate sometimes comes as a monohydrate ([NH4]2C2O4·H2O). It is a colorless or white salt under standard conditions and is odorless and non-volatile. It occurs in many plants and vegetables.

Some organic compounds are valid minerals, recognized by the CNMNC (IMA).

OREOcube is an experiment designed by the European Space Agency (ESA) with the NASA that will investigate the effects of solar and cosmic radiation on selected organic compounds. It will consist in a 12-month orbital study of the effects of the outer space environment on astrobiologically relevant materials in an external exposure facility on the International Space Station (ISS).

References

  1. 1 2 3 Seager, Spencer L.; Slabaugh, Michael R. (2013). Chemistry for Today: General, Organic, and Biochemistry. Cengage Learning. pp. 361–362. ISBN   9781285415390.
  2. 1 2 3 4 5 Wenk, Hans-Rudolf; Bulakh, Andrey (2016). Minerals: Their Constitution and Origin. Cambridge University Press. pp. 473–477. ISBN   9781316425282.
  3. 1 2 Mills, Stuart J.; Hatert, Frédéric; Nickel, Ernest H.; Ferraris, Giovanni (2009). "The standardisation of mineral group hierarchies: application to recent nomenclature proposals" (PDF). European Journal of Mineralogy. 21: 1073–1080. doi:10.1127/0935-1221/2009/0021-1994. Archived from the original (PDF) on 2011-02-17. Retrieved 2017-09-08.
  4. "Nickel-Strunz Classification – ORGANIC COMPOUNDS 10th edition". Mindat.org and the Hudson Institute of Mineralogy . Retrieved 8 September 2017.
  5. 1 2 Potticary, Jason; Jensen, Torsten T.; Hall, Simon R. (29 August 2017). "Nanostructural origin of blue fluorescence in the mineral karpatite". Scientific Reports . 7 (1). doi:10.1038/s41598-017-10261-w. PMC   5575318 . PMID   28852091.
  6. 1 2 3 Lee, Milton (1981). Analytical Chemistry of Polycyclic Aromatic Compounds. Oxford: Elsevier Science. pp. 19–21. ISBN   9780323149037.
  7. 1 2 3 4 5 Hazen, Robert M.; Hummer, Daniel R.; Hystad, Grethe; Downs, Robert T.; Golden, Joshua J. (1 April 2016). "Carbon mineral ecology: Predicting the undiscovered minerals of carbon" (pdf). American Mineralogist . 101 (4): 889–906. doi:10.2138/am-2016-5546 . Retrieved 8 September 2017.
  8. "Joanneumite". mindat.org. Hudson Institute of Mineralogy. Retrieved 1 March 2018.
  9. Barthelmy, David. "Amber Mineral Data". Mineralogy database. webmineral.com. Retrieved 8 September 2017.
  10. Artioli, Gilbertolini, ed. (2010). Scientific methods and cultural heritage: an introduction to the application of materials science to archaeometry and conservation science. Oxford: Oxford University Press. p. 373. ISBN   9780199548262.
  11. Wilson, Elizabeth K. "Worldwide Hunt Begins for Missing Carbon Minerals". Scientific American . Retrieved 8 September 2017.

Further reading