Names | |
---|---|
Preferred IUPAC name Coronene [1] | |
Other names [6]circulene X1001757-9, superbenzene, cyclobenzene | |
Identifiers | |
3D model (JSmol) | |
658468 | |
ChEBI | |
ChemSpider | |
ECHA InfoCard | 100.005.348 |
EC Number |
|
286459 | |
KEGG | |
PubChem CID | |
UNII | |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
C24H12 | |
Molar mass | 300.360 g·mol−1 |
Appearance | Yellow powder [2] |
Density | 1.371 g/cm3 [2] |
Melting point | 437.3 °C (819.1 °F; 710.5 K) [2] |
Boiling point | 525 °C (977 °F; 798 K) [2] |
0.14 μg/L [3] | |
Solubility | Very soluble: benzene, toluene, hexane, [4] Chloroform (1 mmol·L−1) [5] and ethers, sparingly soluble in ethanol. |
log P | 6.05 [6] |
Band gap | 1.7 eV [7] |
-243.3·10−6 cm3/mol | |
Structure [8] | |
Monoclinic | |
P21/n | |
D6h | |
a = 10.02 Å, b = 4.67 Å, c = 15.60 Å α = 90°, β = 106.7°, γ = 90° | |
Formula units (Z) | 2 |
0 D | |
Thermochemistry [9] | |
Enthalpy of fusion (ΔfH⦵fus) | 19.2 kJ/mol |
Hazards | |
GHS labelling: | |
Warning | |
H371 | |
P260, P264, P270, P309+P311, P405, P501 | |
NFPA 704 (fire diamond) | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Coronene (also known as superbenzene and cyclobenzene) is a polycyclic aromatic hydrocarbon (PAH) comprising seven peri-fused benzene rings. [10] Its chemical formula is C
24H
12. It is a yellow material that dissolves in common solvents including benzene, toluene, and dichloromethane. Its solutions emit blue light fluorescence under UV light. It has been used as a solvent probe, similar to pyrene.
The compound is of theoretical interest to organic chemists because of its aromaticity. It can be described by 20 resonance structures or by a set of three mobile Clar sextets. In the Clar sextet case, most stable structure for coronene has only three isolated outer sextets as fully aromatic although superaromaticity would still be possible when these sextets are able to migrate into next ring.
Coronene occurs naturally as very rare mineral carpathite, characterized by flakes of pure coronene embedded in sedimentary rock. This mineral may be created from ancient hydrothermal vent activity. [11] In earlier times this mineral was also called karpatite or pendletonite. [12]
The presence of coronene putatively formed from contact of magma with fossil fuel deposits has been used to argue that Permian-Triassic “Great Dying” event was caused by a greenhouse gas warming episode triggered by large-scale Siberian vulcanism. [13]
Coronene is produced in the petroleum-refining process of hydrocracking, where it can dimerize to a fifteen ring PAH, trivially named "dicoronylene" . Centimeter-long crystals can be grown from a supersaturated solution of molecules in toluene (ca. 2.5 mg/ml), which is slowly cooled (ca. 0.04 K/min) from 328 K to 298 K over a period of 12 hours. [8]
Coronene is a planar circulene. It forms needle-like crystals with a monoclinic, herringbone-like structure. The most common polymorph is γ, but β form can also be produced in an applied magnetic field (ca. 1 Tesla) [8] or by phase transition from γ decreasing the temperature below 158 K. [14] The structure containing two C-H groups on one benzene ring, so-called DUO, was analyzed by infrared spectroscopy. [15]
Coronene has been used in the synthesis of graphene. For example, coronene molecules evaporated onto a copper surface at 1000 degrees Celsius will form a graphene lattice which can then be transferred onto another substrate. [16]
Aromatic compounds or arenes usually refers to organic compounds "with a chemistry typified by benzene" and "cyclically conjugated." The word "aromatic" originates from the past grouping of molecules based on odor, before their general chemical properties were understood. The current definition of aromatic compounds does not have any relation to their odor. Aromatic compounds are now defined as cyclic compounds satisfying Hückel's Rule. Aromatic compounds have the following general properties:
In organic chemistry, aromaticity is a chemical property describing the way in which a conjugated ring of unsaturated bonds, lone pairs, or empty orbitals exhibits a stabilization stronger than would be expected by the stabilization of conjugation alone. The earliest use of the term was in an article by August Wilhelm Hofmann in 1855. There is no general relationship between aromaticity as a chemical property and the olfactory properties of such compounds.
Phenanthrene is a polycyclic aromatic hydrocarbon (PAH) with formula C14H10, consisting of three fused benzene rings. It is a colorless, crystal-like solid, but can also appear yellow. Phenanthrene is used to make dyes, plastics, pesticides, explosives, and drugs. It has also been used to make bile acids, cholesterol and steroids.
A polycyclic aromatic hydrocarbon (PAH) is a class of organic compounds that is composed of multiple aromatic rings. The simplest representative is naphthalene, having two aromatic rings, and the three-ring compounds anthracene and phenanthrene. PAHs are uncharged, non-polar and planar. Many are colorless. Many of them are found in coal and in oil deposits, and are also produced by the incomplete combustion of organic matter—for example, in engines and incinerators or when biomass burns in forest fires.
Pyrene is a polycyclic aromatic hydrocarbon (PAH) consisting of four fused benzene rings, resulting in a flat aromatic system. The chemical formula is C16H10. This yellow-green solid is the smallest peri-fused PAH. Pyrene forms during incomplete combustion of organic compounds.
Simple aromatic rings, also known as simple arenes or simple aromatics, are aromatic organic compounds that consist only of a conjugated planar ring system. Many simple aromatic rings have trivial names. They are usually found as substructures of more complex molecules. Typical simple aromatic compounds are benzene, indole, and pyridine.
Pentacene is a polycyclic aromatic hydrocarbon consisting of five linearly-fused benzene rings. This highly conjugated compound is an organic semiconductor. The compound generates excitons upon absorption of ultra-violet (UV) or visible light; this makes it very sensitive to oxidation. For this reason, this compound, which is a purple powder, slowly degrades upon exposure to air and light.
Idrialite is a rare hydrocarbon mineral with approximate chemical formula C22H14.
A circulene is a macrocyclic arene in which a central polygon is surrounded and fused by benzenoids. Nomenclature within this class of molecules is based on the number of benzene rings surrounding the core, which is equivalent to the size of the central polygon. Examples which have been synthesized include [5]circulene (corannulene), [6]circulene (coronene), [7]circulene, and [12]circulene (kekulene) These compounds belong to a larger class of geodesic polyarenes. Whereas [5]circulene is bowl-shaped and [6]circulene is planar, [7]circulene has a unique saddle-shaped structure. The helicenes are a conceptually related class of structures in which the array of benzene rings form an open helix rather than a closed ring.
Carpathite is a very rare hydrocarbon mineral, consisting of exceptionally pure coronene (C24H12), a polycyclic aromatic hydrocarbon. The name has been spelled karpatite and the mineral was improperly renamed pendletonite.
In organic and physical organic chemistry, Clar's rule is an empirical rule that relates the chemical stability of a molecule with its aromaticity. It was introduced in 1972 by the Austrian organic chemist Erich Clar in his book The Aromatic Sextet. The rule states that given a polycyclic aromatic hydrocarbon, the resonance structure most important to characterize its properties is that with the largest number of aromatic π-sextets i.e. benzene-like moieties.
Dicoronylene is the trivial name for a very large polycyclic aromatic hydrocarbon. It has 15 rings and is a brick-red solid. Its formula is C
48H
20. Dicoronylene sublimes under high vacuum, 0.001 torr, between 250 °C and 300 °C.
Tetraphenylcyclopentadienone is an organic compound with the formula (C6H5C)4C4C=O. It is classified as a cyclic dienone. It is a dark purple to black crystalline solid that is soluble in organic solvents. It is an easily made building block for many organic and organometallic compounds.
Kekulene is a polycyclic aromatic hydrocarbon which consists of 12 fused benzene rings arranged in a circle. It is therefore classified as a [12]-circulene with the chemical formula C48H24. It was first synthesized in 1978, and was named in honor of August Kekulé, the discoverer of the structure of the benzene molecule.
Hexa-peri-hexabenzocoronene (HBC) is a polycyclic aromatic hydrocarbon with the molecular formula C42H18. It consists of a central coronene molecule, with an additional benzene ring fused between each adjacent pair of rings around the periphery. It is sometimes simply called hexabenzocoronene, however, there are other chemicals that share this less-specific name, such as hexa-cata-hexabenzocoronene.
An organic mineral is an organic compound in mineral form. An organic compound is any compound containing carbon, aside from some simple ones discovered before 1828. There are three classes of organic mineral: hydrocarbons, salts of organic acids, and miscellaneous. Organic minerals are rare, and tend to have specialized settings such as fossilized cacti and bat guano. Mineralogists have used statistical models to predict that there are more undiscovered organic mineral species than known ones.
Hexa-cata-hexabenzocoronene (hexabenzo[a,d,g,j,m,p]coronene) is a polycyclic aromatic hydrocarbon with the molecular formula C48H24. It consists of a central coronene molecule, with an additional benzene ring fused onto each ring around the periphery.
In organic chemistry, contorted aromatics, or more precisely contorted polycyclic aromatic hydrocarbons, are polycyclic aromatic hydrocarbons (PAHs) in which the fused aromatic molecules deviate from the usual planarity.
Klaus Müllen is a German chemist working in the fields of polymer chemistry, supramolecular chemistry and nanotechnology. He is known for the synthesis and exploration of the properties of graphene-like nanostructures and their potential applications in organic electronics.
Superphenalene is a very large polycyclic aromatic hydrocarbon (PAH) with chemical formula C96H30. It can be formally considered to consist of three fused superbenzenes (hexa-peri-hexabenzocoronene).