Truxene

Last updated
Truxene
Truxeen.png
Names
Preferred IUPAC name
10,15-dihydro-5H-diindeno-[1,2-a:1',2'-c]fluorene
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.008.132 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 208-944-7
PubChem CID
  • Key: YGPLLMPPZRUGTJ-UHFFFAOYSA-N
  • InChI=1S/C27H18/c1-4-10-19-16(7-1)13-22-25(19)23-14-17-8-3-6-12-21(17)27(23)24-15-18-9-2-5-11-20(18)26(22)24/h1-12H,13-15H2
  • C1C2=CC=CC=C2C3=C4CC5=CC=CC=C5C4=C6CC7=CC=CC=C7C6=C31
Properties
C27H18
Molar mass 342.441 g·mol−1
Density 1.286 g/cm3
Melting point 378 °C (712 °F; 651 K) [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Truxene is a polycyclic aromatic hydrocarbon. The molecule can be thought of as being made up of three fluorene units arranged symmetrically and sharing a common central benzene. Truxene is solid, and it is slightly soluble in water.

Contents

History

Truxene has been known since the end of the 19th century. J. Hausmann came across it in 1889 while investigating the reactions of 3-phenylpropionic acid with phosphorus pentoxide. He could not determine the exact structure but assumed it was a cyclic trimer of 1-indanone. According to him, it was formed by the condensation of 1-indanone resulting from intramolecular acylation of 3-phenylpropanoic acid. [2]

Frederic Stanley Kipping was able to confirm the structure of truxene in 1894 and obtained the compound by the trimerization of 1-indanone. [3]

Preparation

Truxene is prepared by the cyclotrimerization of 1-indanone in a mixture of acetic acid and concentrated hydrochloric acid. [4]

Uses

Truxene has a star shape, and it is therefore suitable as a starting point for the synthesis of dendrimers. [5]

Derivatives of truxene have also been used for the synthesis of liquid crystals [6] and fragments of fullerene. [7]

Related Research Articles

<span class="mw-page-title-main">Aromatic compound</span> Compound containing rings with delocalized pi electrons

Aromatic compounds or arenes usually refers to organic compounds "with a chemistry typified by benzene" and "cyclically conjugated." The word "aromatic" originates from the past grouping of molecules based on odor, before their general chemical properties were understood. The current definition of aromatic compounds does not have any relation to their odor. Aromatic compounds are now defined as cyclic compounds satisfying Hückel's Rule. Aromatic compounds have the following general properties:

<span class="mw-page-title-main">Naphthalene</span> Chemical compound

Naphthalene is an organic compound with formula C
10
H
8
. It is the simplest polycyclic aromatic hydrocarbon, and is a white crystalline solid with a characteristic odor that is detectable at concentrations as low as 0.08 ppm by mass. As an aromatic hydrocarbon, naphthalene's structure consists of a fused pair of benzene rings. It is the main ingredient of traditional mothballs.

<span class="mw-page-title-main">Anthracene</span> Chemical compound

Anthracene is a solid polycyclic aromatic hydrocarbon (PAH) of formula C14H10, consisting of three fused benzene rings. It is a component of coal tar. Anthracene is used in the production of the red dye alizarin and other dyes. Anthracene is colorless but exhibits a blue (400–500 nm peak) fluorescence under ultraviolet radiation.

<span class="mw-page-title-main">Polycyclic aromatic hydrocarbon</span> Hydrocarbon composed of multiple aromatic rings

A polycyclic aromatic hydrocarbon (PAH) is a class of organic compounds that is composed of multiple aromatic rings. The simplest representative is naphthalene, having two aromatic rings, and the three-ring compounds anthracene and phenanthrene. PAHs are uncharged, non-polar and planar. Many are colorless. Many of them are found in coal and in oil deposits, and are also produced by the incomplete combustion of organic matter—for example, in engines and incinerators or when biomass burns in forest fires.

<span class="mw-page-title-main">Hückel's rule</span> Method of determining aromaticity in organic molecules

In organic chemistry, Hückel's rule predicts that a planar ring molecule will have aromatic properties if it has 4n + 2 π electrons, where n is a non-negative integer. The quantum mechanical basis for its formulation was first worked out by physical chemist Erich Hückel in 1931. The succinct expression as the 4n + 2 rule has been attributed to W. v. E. Doering (1951), although several authors were using this form at around the same time.

<span class="mw-page-title-main">Methylcholanthrene</span> Chemical compound

Methylcholanthrene is a highly carcinogenic polycyclic aromatic hydrocarbon produced by burning organic compounds at very high temperatures. Methylcholanthrene is also known as 3-methylcholanthrene, 20-methylcholanthrene or the IUPAC name 3-methyl-1,2-dyhydrobenzo[j]aceanthrylene. The short notation often used is 3-MC or MCA. This compound forms pale yellow solid crystals when crystallized from benzene and ether. It has a melting point around 180 °C and its boiling point is around 280 °C at a pressure of 80 mmHg. Methylcholanthrene is used in laboratory studies of chemical carcinogenesis. It is an alkylated derivative of benz[a]anthracene and has a similar UV spectrum. The most common isomer is 3-methylcholanthrene, although the methyl group can occur in other places.

<span class="mw-page-title-main">Chicken wire (chemistry)</span>

In chemistry, the term chicken wire is used in different contexts. Most of them relate to the similarity of the regular hexagonal (honeycomb-like) patterns found in certain chemical compounds to the mesh structure commonly seen in real chicken wire.

<span class="mw-page-title-main">Triphenylene</span> Chemical compound

Triphenylene is an organic compound with the formula (C6H4)3. A flat polycyclic aromatic hydrocarbon (PAH), it consists of four fused benzene rings. Triphenylene has delocalized 18-π-electron systems based on a planar structure, corresponding to the symmetry group D3h. It is a white or colorless solid.

<span class="mw-page-title-main">Sumanene</span> Chemical compound

Sumanene is a polycyclic aromatic hydrocarbon and of scientific interest because the molecule can be considered a fragment of buckminsterfullerene. Suman means "sunflower" in both Hindi and Sanskrit. The core of the arene is a benzene ring and the periphery consists of alternating benzene rings (3) and cyclopentadiene rings (3). Unlike fullerene, sumanene has benzyl positions which are available for organic reactions.

<span class="mw-page-title-main">Corannulene</span> Chemical compound

Corannulene is a polycyclic aromatic hydrocarbon with chemical formula C20H10. The molecule consists of a cyclopentane ring fused with 5 benzene rings, so another name for it is [5]circulene. It is of scientific interest because it is a geodesic polyarene and can be considered a fragment of buckminsterfullerene. Due to this connection and also its bowl shape, corannulene is also known as a buckybowl. Buckybowls are fragments of buckyballs. Corannulene exhibits a bowl-to-bowl inversion with an inversion barrier of 10.2 kcal/mol (42.7 kJ/mol) at −64 °C.

<span class="mw-page-title-main">Pentacene</span> Hydrocarbon compound (C22H14) made of 5 fused benzene rings

Pentacene is a polycyclic aromatic hydrocarbon consisting of five linearly-fused benzene rings. This highly conjugated compound is an organic semiconductor. The compound generates excitons upon absorption of ultra-violet (UV) or visible light; this makes it very sensitive to oxidation. For this reason, this compound, which is a purple powder, slowly degrades upon exposure to air and light.

<span class="mw-page-title-main">Fluorene</span> Chemical compound

Fluorene, or 9H-fluorene is an organic compound with the formula (C6H4)2CH2. It forms white crystals that exhibit a characteristic, aromatic odor similar to that of naphthalene. It has a violet fluorescence, hence its name. For commercial purposes it is obtained from coal tar. It is insoluble in water and soluble in many organic solvents. Although sometimes classified as a polycyclic aromatic hydrocarbon, the five-membered ring has no aromatic properties. Fluorene is mildly acidic.

<span class="mw-page-title-main">PAH world hypothesis</span> Hypothesis about the origin of life

The PAH world hypothesis is a speculative hypothesis that proposes that polycyclic aromatic hydrocarbons (PAHs), known to be abundant in the universe, including in comets, and assumed to be abundant in the primordial soup of the early Earth, played a major role in the origin of life by mediating the synthesis of RNA molecules, leading into the RNA world. However, as yet, the hypothesis is untested.

<span class="mw-page-title-main">Hexacene</span> Chemical compound

Hexacene is an aromatic compound consisting of six linearly-fused benzene rings. It is a blue-green, air-stable solid with low solubility.

<span class="mw-page-title-main">Circulene</span> Class of chemical

A circulene is a macrocyclic arene in which a central polygon is surrounded and fused by benzenoids. Nomenclature within this class of molecules is based on the number of benzene rings surrounding the core, which is equivalent to the size of the central polygon. Examples which have been synthesized include [5]circulene (corannulene), [6]circulene (coronene), [7]circulene, and [12]circulene (kekulene) These compounds belong to a larger class of geodesic polyarenes. Whereas [5]circulene is bowl-shaped and [6]circulene is planar, [7]circulene has a unique saddle-shaped structure. The helicenes are a conceptually related class of structures in which the array of benzene rings form an open helix rather than a closed ring.

<span class="mw-page-title-main">Fullerene chemistry</span>

Fullerene chemistry is a field of organic chemistry devoted to the chemical properties of fullerenes. Research in this field is driven by the need to functionalize fullerenes and tune their properties. For example, fullerene is notoriously insoluble and adding a suitable group can enhance solubility. By adding a polymerizable group, a fullerene polymer can be obtained. Functionalized fullerenes are divided into two classes: exohedral fullerenes with substituents outside the cage and endohedral fullerenes with trapped molecules inside the cage.

<span class="mw-page-title-main">Geodesic polyarene</span>

A geodesic polyarene in organic chemistry is a polycyclic aromatic hydrocarbon with curved convex or concave surfaces. Examples include fullerenes, nanotubes, corannulenes, helicenes and sumanene. The molecular orbitals of the carbon atoms in these systems are to some extent pyramidalized resulting a different pi electron density on either side of the molecule with consequences for reactivity.

<span class="mw-page-title-main">Thermal rearrangement of aromatic hydrocarbons</span>

Thermal rearrangements of aromatic hydrocarbons are considered to be unimolecular reactions that directly involve the atoms of an aromatic ring structure and require no other reagent than heat. These reactions can be categorized in two major types: one that involves a complete and permanent skeletal reorganization (isomerization), and one in which the atoms are scrambled but no net change in the aromatic ring occurs (automerization). The general reaction schemes of the two types are illustrated in Figure 1.

<span class="mw-page-title-main">Indenofluorene</span> Class of chemical compounds

An indenofluorene (IF) is any of five hydrocarbons with formula C
20
H
12
, whose carbon skeleton is a sequence of five fused rings with 6, 5, 6, 5, and 6 carbon atoms; an arrangement that can be described as the fusion of an indene core and a fluorene core.

<span class="mw-page-title-main">Contorted aromatics</span> Hydrocarbon compounds composed of rings fused such that the molecule is nonplanar

In organic chemistry, contorted aromatics, or more precisely contorted polycyclic aromatic hydrocarbons, are polycyclic aromatic hydrocarbons (PAHs) in which the fused aromatic molecules deviate from the usual planarity.

References

  1. Harper, William L.; Smith, Wesley E. Process for synthesizing truxene; amorphous or graphitic carbon from indenes. 1970. US 3504044 A.
  2. Hausmann, J. (July 1889). "Einwirkung von o -Cyanbenzylchlorid auf Natriummalonester. Untersuchung des α-Hydrindons". Berichte der Deutschen Chemischen Gesellschaft. 22 (2): 2019–2026. doi:10.1002/cber.18890220264.
  3. Kipping, F. Stanley (1894). "XXIX. The formation of the hydrocarbon "truxene" from phenylpropionic acid, and from hydrindone". J. Chem. Soc., Trans. 65: 269–290. doi:10.1039/CT8946500269.
  4. Amick, Aaron Warren (2008). Methodology Development for Use in Polycyclic Aromatic Hydrocarbon Synthesis. PhD thesis. p. 5. ISBN   978-0-549-75717-7.
  5. Cao, Xiao-Yu; Zhang, Wen-Bin; Wang, Jin-Liang; Zhou, Xing-Hua; Lu, Hua; Pei, Jian (1 October 2003). "Extended π-Conjugated Dendrimers Based on Truxene". Journal of the American Chemical Society. 125 (41): 12430–12431. doi:10.1021/ja037723d. PMID   14531685.
  6. Destrade, C.; Gasparoux, H.; Babeau, A.; Tinh, Nguyen Huu; Malthete, J. (May 1981). "Truxene Derivatives: A New Family of Disc-Like Liquid Crystals With an Inverted Nematic-Columnar Sequence". Molecular Crystals and Liquid Crystals. 67 (1): 37–47. doi:10.1080/00268948108070873.
  7. Dehmlow, Eckehard V.; Kelle, Torsten (June 1997). "Synthesis of New Truxene Derivatives: Possible Precursors of Fullerene Partial Structures?". Synthetic Communications. 27 (11): 2021–2031. doi:10.1080/00397919708006804.