Lightning rocket

Last updated

A lightning rocket is a rocket that unravels a conductor, such as a fine copper wire, as it ascends, to conduct lightning charges to the ground. Lightning strikes derived from this process are called "triggered lightning." [1] [2] [3]

Contents

Design

A conducting lightning rod is grounded and positioned alongside the launch tube in communication with the conductive path to thereby control the time and location of a lightning strike from the thundercloud. [4] The conductor trailed by the rocket can be either a physical wire, or column of ionized gas produced by the engine. A lightning rocket using solid propellant may have cesium salts added, which produces a conductive path when the exhaust gases are discharged from the rocket. In a liquid propellant rocket a solution of calcium chloride is used to form the conductive path.

The system consists of a specially designed launch pad with lightning rods and conductors attached. [5] The launch pad is either controlled wirelessly or via pneumatic line to the control station to prevent the discharge traveling to the control equipment. The fine copper wire (more recently reinforced with kevlar) is attached to the ground and plays out from the rocket as it ascends. The initial strike follows this wire and is as a result unusually straight. As the wire is vaporized by the initial strike, subsequent strikes are more angular in nature and follow the ionization trail of the initial strike. Rockets of this type are used for both lightning research and lightning control.

Betts system

The Betts lightning rocket, patented by Robert E. Betts in 2003, consists of a rocket launcher that is in communication with a detection device that measures the presence of electrostatic and ionic change in close proximity to the rocket launcher that also fires the rocket. [6] This system is designed to control the time and the location of a lightning strike. As the rocket flies to the thundercloud this liquid is expelled aft forming a column in the air of particles that are more electrically conductive than the surrounding air. In a similar fashion to the system employing a solid propellant as the conductive producer this conductive path conducts a lightning strike to ground to thereby control the time and location of a lightning strike from the thundercloud.

Related Research Articles

<span class="mw-page-title-main">Insulator (electricity)</span> Material that does not conduct an electric current

An electrical insulator is a material in which electric current does not flow freely. The atoms of the insulator have tightly bound electrons which cannot readily move. Other materials—semiconductors and conductors—conduct electric current more easily. The property that distinguishes an insulator is its resistivity; insulators have higher resistivity than semiconductors or conductors. The most common examples are non-metals.

<span class="mw-page-title-main">Rocket</span> Vehicle propelled by a reaction gas engine

A rocket is a vehicle that uses jet propulsion to accelerate without using the surrounding air. A rocket engine produces thrust by reaction to exhaust expelled at high speed. Rocket engines work entirely from propellant carried within the vehicle; therefore a rocket can fly in the vacuum of space. Rockets work more efficiently in a vacuum and incur a loss of thrust due to the opposing pressure of the atmosphere.

<span class="mw-page-title-main">Ground (electricity)</span> Reference point in an electrical circuit from which voltages are measured

In electrical engineering, ground or earth may be a reference point in an electrical circuit from which voltages are measured, a common return path for electric current, or a direct physical connection to the Earth.

<span class="mw-page-title-main">Lightning</span> Weather phenomenon involving electrostatic discharge

Lightning is a natural phenomenon formed by the occurrence of lightning bolts, which are electrostatic discharges through the atmosphere between two electrically charged regions, either both in the atmosphere or with one in the atmosphere and on the ground, temporarily neutralizing these in a near-instantaneous release of an average of one gigajoule of energy. This discharge may produce a wide range of electromagnetic radiation, from heat created by the rapid movement of electrons, to brilliant flashes of visible light in the form of black-body radiation. Lightning causes thunder, a sound from the shock wave which develops as gases in the vicinity of the discharge experience a sudden increase in pressure. Lightning occurs commonly during thunderstorms as well as other types of energetic weather systems, but volcanic lightning can also occur during volcanic eruptions. Lightning is an atmospheric electrical phenomenon and contributes to the global atmospheric electrical circuit.

<span class="mw-page-title-main">Electrostatic discharge</span> Sudden flow of electric current between 2 electrically charged objects by contact

Electrostatic discharge (ESD) is a sudden and momentary flow of electric current between two electrically charged objects caused by contact, an electrical short or dielectric breakdown. A buildup of static electricity can be caused by tribocharging or by electrostatic induction. The ESD occurs when differently-charged objects are brought close together or when the dielectric between them breaks down, often creating a visible spark.

<span class="mw-page-title-main">Spark gap</span>

A spark gap consists of an arrangement of two conducting electrodes separated by a gap usually filled with a gas such as air, designed to allow an electric spark to pass between the conductors. When the potential difference between the conductors exceeds the breakdown voltage of the gas within the gap, a spark forms, ionizing the gas and drastically reducing its electrical resistance. An electric current then flows until the path of ionized gas is broken or the current reduces below a minimum value called the "holding current". This usually happens when the voltage drops, but in some cases occurs when the heated gas rises, stretching out and then breaking the filament of ionized gas. Usually, the action of ionizing the gas is violent and disruptive, often leading to sound, light, and heat.

<span class="mw-page-title-main">Launch pad</span> Facility from which rockets are launched

A launch pad is an above-ground facility from which a rocket-powered missile or space vehicle is vertically launched. The term launch pad can be used to describe just the central launch platform, or the entire complex. The entire complex will include a launch mount or launch platform to physically support the vehicle, a service structure with umbilicals, and the infrastructure required to provide propellants, cryogenic fluids, electrical power, communications, telemetry, rocket assembly, payload processing, storage facilities for propellants and gases, equipment, access roads, and drainage.

<span class="mw-page-title-main">RS-25</span> Space Shuttle and SLS main engine

The Aerojet Rocketdyne RS-25, also known as the Space Shuttle Main Engine (SSME), is a liquid-fuel cryogenic rocket engine that was used on NASA's Space Shuttle and is currently used on the Space Launch System (SLS).

<span class="mw-page-title-main">Electrical breakdown</span> Conduction of electricity through an insulator under sufficiently high voltage

In electronics, electrical breakdown or dielectric breakdown is a process that occurs when an electrically insulating material, subjected to a high enough voltage, suddenly becomes a conductor and current flows through it. All insulating materials undergo breakdown when the electric field caused by an applied voltage exceeds the material's dielectric strength. The voltage at which a given insulating object becomes conductive is called its breakdown voltage and, in addition to its dielectric strength, depends on its size and shape, and the location on the object at which the voltage is applied. Under sufficient electrical potential, electrical breakdown can occur within solids, liquids, or gases. However, the specific breakdown mechanisms are different for each kind of dielectric medium.

<span class="mw-page-title-main">Geosynchronous Satellite Launch Vehicle</span> Indian satellite launch vehicle

Geosynchronous Satellite Launch Vehicle (GSLV) is an expendable launch system operated by the Indian Space Research Organisation (ISRO). GSLV was used in fifteen launches from 2001 to 2023.

<span class="mw-page-title-main">Electric arc</span> Electrical breakdown of a gas that results in an ongoing electrical discharge

An electric arc is an electrical breakdown of a gas that produces a prolonged electrical discharge. The current through a normally nonconductive medium such as air produces a plasma, the plasma may produce visible light. An arc discharge is initiated either by thermionic emission or by field emission. After initiation, the arc relies on thermionic emission of electrons from the electrodes supporting the arc. An arc discharge is characterized by a lower voltage than a glow discharge. An archaic term is voltaic arc, as used in the phrase "voltaic arc lamp".

<span class="mw-page-title-main">Atlas-Centaur</span> Family of space launch vehicles

The Atlas-Centaur was a United States expendable launch vehicle derived from the SM-65 Atlas D missile. The vehicle featured a Centaur upper stage, the first such stage to use high-performance liquid hydrogen as fuel. Launches were conducted from Launch Complex 36 at the Cape Canaveral Air Force Station (CCAFS) in Florida. After a strenuous flight test program, Atlas-Centaur went on to launch several crucial spaceflight missions for the United States, including Surveyor 1, Mariner 4, and Pioneer 10/11. The vehicle would be continuously developed and improved into the 1990s, with the last direct descendant being the highly successful Atlas II.

<span class="mw-page-title-main">Power cable</span> Bundle of wires for transmitting electricity

A power cable is an electrical cable, an assembly of one or more electrical conductors, usually held together with an overall sheath. The assembly is used for transmission of electrical power. Power cables may be installed as permanent wiring within buildings, buried in the ground, run overhead, or exposed. Power cables that are bundled inside thermoplastic sheathing and that are intended to be run inside a building are known as NM-B.

An electrolaser is a type of electroshock weapon that is also a directed-energy weapon. It uses lasers to form an electrically conductive laser-induced plasma channel (LIPC). A fraction of a second later, a powerful electric current is sent down this plasma channel and delivered to the target, thus functioning overall as a large-scale, high energy, long-distance version of the Taser electroshock gun.

<span class="mw-page-title-main">Lightning strike</span> Electric discharge between the atmosphere and the ground

A lightning strike is a lightning event in which the electric discharge takes place between the atmosphere and the ground. Most originate in a cumulonimbus cloud and terminate on the ground, called cloud-to-ground (CG) lightning. A less common type of strike, ground-to-cloud (GC) lightning, is upward-propagating lightning initiated from a tall grounded object and reaching into the clouds. About 25% of all lightning events worldwide are strikes between the atmosphere and earth-bound objects. Most are intracloud (IC) lightning and cloud-to-cloud (CC), where discharges only occur high in the atmosphere. Lightning strikes the average commercial aircraft at least once a year, but modern engineering and design means this is rarely a problem. The movement of aircraft through clouds can even cause lightning strikes.

<span class="mw-page-title-main">Antistatic device</span> Device that reduces or inhibits electrostatic discharge

An antistatic device is any device that reduces, dampens, or otherwise inhibits electrostatic discharge, or ESD, which is the buildup or discharge of static electricity. ESD can damage electrical components such as computer hard drives, and even ignite flammable liquids and gases.

<span class="mw-page-title-main">Lightning rod</span> Metal rod intended to protect a structure from a lightning strike

A lightning rod or lightning conductor is a metal rod mounted on a structure and intended to protect the structure from a lightning strike. If lightning hits the structure, it will preferentially strike the rod and be conducted to ground through a wire, instead of passing through the structure, where it could start a fire or cause electrocution. Lightning rods are also called finials, air terminals, or strike termination devices.

<span class="mw-page-title-main">Franklin bells</span> Scientific instrument demonstrating electric charge

Franklin bells are an early demonstration of electric charge designed to work with a Leyden jar or a Lightning rod. Franklin bells are only a qualitative indicator of electric charge and were used for simple demonstrations rather than research. The bells are an adaptation to the first device that converted electrical energy into mechanical energy in the form of continuous mechanical motion, in this case, the moving of a bell clapper back and forth between two oppositely charged bells.

<span class="mw-page-title-main">Streamer discharge</span> Type of transient electric discharge

In electromagnetism, a streamer discharge, also known as filamentary discharge, is a type of transient electric discharge which forms at the surface of a conductive electrode carrying a high voltage in an insulating medium such as air. Streamers are luminous writhing branching sparks, plasma channels composed of ionized air molecules, which repeatedly strike out from the electrode into the air.

<span class="mw-page-title-main">SpaceX Starship</span> Super heavy-lift reusable launch vehicle

Starship is a super heavy-lift space vehicle under development by SpaceX. At 120 metres in height and with a liftoff mass of 5,000 metric tons, Starship is the largest and most powerful rocket ever flown, surpassing the thrust of NASA's Space Launch System and Saturn V, as well as the Soviet N1, which had previously held the record.

References

  1. Patel, Neel. "Don't Try This at Home: Making Lightning Bolts With Rockets". Wired. Retrieved 13 July 2021.
  2. "ROCKET-TRIGGERED LIGHTNING PUTS ON A SHOW LIKE NO OTHER". nerdist.com. v. Retrieved 13 July 2021.
  3. "LIGHTNING STRIKES AND ROCKETS FLY, UNTENDED". NYT. New York Times. 11 June 1987. Retrieved 13 July 2021.
  4. "Zap! Rockets Trigger Lightning, Scientists Discover X-rays". Space.com (Wayback). Space.com. Archived from the original on 2010-09-07. Retrieved 13 July 2021.
  5. "PRODUCTION OF ARTIFICIAL FULGURITE BY UTILIZING ROCKET TRIGGERED LIGHTNING" (PDF). PDF. 8TH INTERNATIONAL SYMPOSIUM ON HIGH VOLTAGE ENGINEERING. Retrieved 13 July 2021.
  6. "US6597559B2 Lightning rocket". Google. Retrieved 13 July 2021.