Limit and colimit of presheaves

Last updated

In category theory, a branch of mathematics, a limit or a colimit of presheaves on a category C is a limit or colimit in the functor category . [1]

The category admits small limits and small colimits. [2] Explicitly, if is a functor from a small category I and U is an object in C, then is computed pointwise:

The same is true for small limits. Concretely this means that, for example, a fiber product exists and is computed pointwise.

When C is small, by the Yoneda lemma, one can view C as the full subcategory of . If is a functor, if is a functor from a small category I and if the colimit in is representable; i.e., isomorphic to an object in C, then, [3] in D,

(in particular the colimit on the right exists in D.)

The density theorem states that every presheaf is a colimit of representable presheaves.

Notes

  1. Notes on the foundation: the notation Set implicitly assumes that there is the notion of a small set; i.e., one has made a choice of a Grothendieck universe.
  2. Kashiwara & Schapira 2006 , Corollary 2.4.3.
  3. Kashiwara & Schapira 2006 , Proposition 2.6.4.

Related Research Articles

In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied.

In mathematics, the inverse limit is a construction that allows one to "glue together" several related objects, the precise gluing process being specified by morphisms between the objects. Thus, inverse limits can be defined in any category although their existence depends on the category that is considered. They are a special case of the concept of limit in category theory.

In category theory, a branch of mathematics, the abstract notion of a limit captures the essential properties of universal constructions such as products, pullbacks and inverse limits. The dual notion of a colimit generalizes constructions such as disjoint unions, direct sums, coproducts, pushouts and direct limits.

In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure of the categories involved. Hence, a natural transformation can be considered to be a "morphism of functors". Informally, the notion of a natural transformation states that a particular map between functors can be done consistently over an entire category.

In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the category of abelian groups, Ab. The theory originated in an effort to unify several cohomology theories by Alexander Grothendieck and independently in the slightly earlier work of David Buchsbaum. Abelian categories are very stable categories; for example they are regular and they satisfy the snake lemma. The class of abelian categories is closed under several categorical constructions, for example, the category of chain complexes of an abelian category, or the category of functors from a small category to an abelian category are abelian as well. These stability properties make them inevitable in homological algebra and beyond; the theory has major applications in algebraic geometry, cohomology and pure category theory. Abelian categories are named after Niels Henrik Abel.

In mathematics, specifically category theory, adjunction is a relationship that two functors may have, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems, such as the construction of a free group on a set in algebra, or the construction of the Stone–Čech compactification of a topological space in topology.

Direct limit Special case of colimit in category theory

In mathematics, a direct limit is a way to construct a object from many objects that are put together in a specific way. These objects may be groups, rings, vector spaces or in general objects from any category. The way they are put together is specified by a system of homomorphisms between those smaller objects. The direct limit of the objects , where ranges over some directed set , is denoted by .

In category theory, a branch of mathematics, a functor category is a category where the objects are the functors and the morphisms are natural transformations between the functors. Functor categories are of interest for two main reasons:

In mathematics, specifically in category theory, the category of small categories, denoted by Cat, is the category whose objects are all small categories and whose morphisms are functors between categories. Cat may actually be regarded as a 2-category with natural transformations serving as 2-morphisms.

This is a glossary of properties and concepts in category theory in mathematics.

Kan extensions are universal constructs in category theory, a branch of mathematics. They are closely related to adjoints, but are also related to limits and ends. They are named after Daniel M. Kan, who constructed certain (Kan) extensions using limits in 1960.

In mathematics, particularly in homotopy theory, a model category is a category with distinguished classes of morphisms ('arrows') called 'weak equivalences', 'fibrations' and 'cofibrations' satisfying certain axioms relating them. These abstract from the category of topological spaces or of chain complexes. The concept was introduced by Daniel G. Quillen (1967).

In category theory, filtered categories generalize the notion of directed set understood as a category. There is a dual notion of cofiltered category which will be recalled below.

In category theory, a branch of mathematics, a presheaf on a category is a functor . If is the poset of open sets in a topological space, interpreted as a category, then one recovers the usual notion of presheaf on a topological space.

The stalk of a sheaf is a mathematical construction capturing the behaviour of a sheaf around a given point.

In mathematics, more specifically in homotopy theory, a simplicial presheaf is a presheaf on a site taking values in simplicial sets. Equivalently, a simplicial presheaf is a simplicial object in the category of presheaves on a site. The notion was introduced by A. Joyal in the 1970s. Similarly, a simplicial sheaf on a site is a simplicial object in the category of sheaves on the site.

In category theory, a branch of mathematics, the density theorem states that every presheaf of sets is a colimit of representable presheaves in a canonical way.

In algebraic topology, a locally constant sheaf on a topological space X is a sheaf on X such that for each x in X, there is an open neighborhood U of x such that the restriction is a constant sheaf on U. It is also called a local system. When X is a stratified space, a constructible sheaf is roughly a sheaf that is locally constant on each member of the stratification.

In mathematics, compact objects, also referred to as finitely presented objects, or objects of finite presentation, are objects in a category satisfying a certain finiteness condition.

In mathematics, the ind-completion or ind-construction is the process of freely adding filtered colimits to a given category C. The objects in this ind-completed category, denoted Ind(C), are known as direct systems, they are functors from a small filtered category I to C.

References