Linepithema humile virus 1

Last updated
Linepithema humile virus 1
Virus classification OOjs UI icon edit-ltr.svg
(unranked): Virus
Realm: Riboviria
Kingdom: Orthornavirae
Phylum: Pisuviricota
Class: Pisoniviricetes
Order: Picornavirales
Family: Dicistroviridae
Genus: Aparavirus
Virus:
Linepithema humile virus 1

Linepithema humile virus-1 (LHUV-1) is a novel virus discovered to be actively replicating within the invasive Argentine ant (Linepithema humile) species. The Argentine ant is extremely invasive across the globe, invading all continents besides Antarctica with their mega-colony. The invasiveness of the ants is allowing the distribution of this virus, among others, into vulnerable honey bee populations which may be responsible for the overall colony collapse. [1]

Contents

Taxonomy

  1. ICTV does not include Linepithema humile virus 1 [2]
  2. NCBI does include it, but puts it under unclassified viruses [3] Disclaimer: The NCBI taxonomy database is not an authoritative source for nomenclature or classification of viruses.
  3. Article 1, "Single-stranded RNA viruses infecting the invasive Argentine ant, Linepithema humile" states it is part of genus Aparavirus of family Dicistroviridae [4]
  4. Article 2, "Invasive ants carry novel viruses in their new range and form reservoirs for a honeybee pathogen" also states it is in family Dicistroviridae. While the article does not state that it is in genus Aparavirus, a clade it is part of contains almost every species that article 1's phylogeny chart contains. [1]

Virus prevalence and distribution

Linepithema humile virus-1 (LHUV-1) was found to be introduced by Argentine ants into New Zealand and Australia. Aside from the ants, the virus has also been reported in other species worldwide such as honeybees. Argentine ants host and act as a reservoir of Deformed wing virus (DWV), which is an agent implicated of honeybee deaths. A correlation and direct interaction between the honeybees and the Argentine ants occurs during invasion and raiding of the beehives. The DWV sequences isolated from New Zealand were found to be similar to strains from local bee and wasp populations. This suggests that ants, wasps, and bees share these pathogen strains. [1]

It was found that when an invasion of an exotic species occurs and becomes abundant, such as the Argentine ant, they tend to have a considerable impact through their ability to become reservoirs and hosts for important pathogens. [1] Ants from sites where ants interacted with bees had the highest viral loads. Where ants did not interact with bees, we found a lower prevalence of DWV relative to other viruses. [4]

Researchers found that Linepithema humile virus-1 (LHUV-1) was detected in sample sites from the n1000 contig sequence in Argentina, Australia, and less than half of the sites tested from New Zealand. Additional ant samples were used from New Zealand in order to examine viruses previously observed in bees, ants, and other insects and determine the correlation among viruses groups. Viruses IAPV, KBV, ABVP, DWV, SINV-1, and SINV-2, with only DWV sequences being found in honeybees and common wasps. In addition, both the DWV and LHUV-1 negative strands were detected showing that these two viruses are actively replicating in Argentine ants. [1]

Presence of DWV and LHUV-1 were detected and confirmed by using molecular methods including RT-PCR and Sanger Sequencing. [1] Data produced from Sanger Sequencing were identical to that of the RNA metagenome contig, n6409, which is from LHUV-1. [1] A single New Zealand queen Argentine ant worker was positive for LHUV-1 with viral replication, but no DWV. LHUV-1 and DWV were both observed to be replicating in the Argentine ants. LHUV-1 and DWV viruses were both reported to be most likely responsible for parasitizing the ants rather than being vectored particles. Prevalence of these two viruses has been shown instrumental in the decline of Argentine ant populations and may be a departure point for future biocontrol development. [1]

Genomics

In order to address the issue of LHUV-1 prevalence, the L. humile genome was sequenced. The genomic assembly was found to be missing cox7a which was lost from the genome. In the genes found to be specific to L. humile, 99 terms were enriched including olfactory receptors, peptidases aiding in production of venom, genes associated with lipid activity involved in cuticular hydrocarbon (CHC) synthesis or catabolism, and DNA methylation genes. [5]

The LHUV-1 virus was found to contain fragments of other viral families within its genome. [5] Notably, the virus maintains single copy Dnmt genes that are able to undergo DNA methylation using a toolkit. [5] In addition to this, occurrences of independent radiation exist within various lineages of LHUV-1 genome. It was reported that ancestral genes tended to proliferate, resulting in the activation of genes such as major royal jelly protein-like genes (MRJPLS), in order to evolve and adapt to new selective pressures. [5]

Researchers found that Dinucleotide transition SNPs, in regards to DNA methylation, were 10 times more prevalent in L. humile. Moreover, the SNP data was concluded to be comparable to other transversions. In order to investigate active replication of DWV and LHUV-1, modified RT-PCR was used to detect the RNA negative strands of both viruses (DWV and LHUV-1). [1] The presence of contig n6409 sequence was confirmed via Sanger sequencing. This allowed for phylogenetic analysis to position the contig with other dicistroviruses.

Related Research Articles

<i>Rhabdoviridae</i> Family of viruses in the order Mononegavirales

Rhabdoviridae is a family of negative-strand RNA viruses in the order Mononegavirales. Vertebrates, invertebrates, plants, fungi and protozoans serve as natural hosts. Diseases associated with member viruses include rabies encephalitis caused by the rabies virus, and flu-like symptoms in humans caused by vesiculoviruses. The name is derived from Ancient Greek rhabdos, meaning rod, referring to the shape of the viral particles. The family has 40 genera, most assigned to three subfamilies.

<i>Mononegavirales</i> Order of viruses

Mononegavirales is an order of negative-strand RNA viruses which have nonsegmented genomes. Some members that cause human disease in this order include Ebola virus, human respiratory syncytial virus, measles virus, mumps virus, Nipah virus, and rabies virus. Important pathogens of nonhuman animals and plants are also in the group. The order includes eleven virus families: Artoviridae, Bornaviridae, Filoviridae, Lispiviridae, Mymonaviridae, Nyamiviridae, Paramyxoviridae, Pneumoviridae, Rhabdoviridae, Sunviridae, and Xinmoviridae.

<span class="mw-page-title-main">Defective interfering particle</span>

Defective interfering particles (DIPs), also known as defective interfering viruses, are spontaneously generated virus mutants in which a critical portion of the particle's genome has been lost due to defective replication or non-homologous recombination. The mechanism of their formation is presumed to be as a result of template-switching during replication of the viral genome, although non-replicative mechanisms involving direct ligation of genomic RNA fragments have also been proposed. DIPs are derived from and associated with their parent virus, and particles are classed as DIPs if they are rendered non-infectious due to at least one essential gene of the virus being lost or severely damaged as a result of the defection. A DIP can usually still penetrate host cells, but requires another fully functional virus particle to co-infect a cell with it, in order to provide the lost factors.

In genetics, an expressed sequence tag (EST) is a short sub-sequence of a cDNA sequence. ESTs may be used to identify gene transcripts, and were instrumental in gene discovery and in gene-sequence determination. The identification of ESTs has proceeded rapidly, with approximately 74.2 million ESTs now available in public databases. EST approaches have largely been superseded by whole genome and transcriptome sequencing and metagenome sequencing.

<i>Bunyavirales</i> Order of RNA viruses

Bunyavirales is an order of segmented negative-strand RNA viruses with mainly tripartite genomes. Member viruses infect arthropods, plants, protozoans, and vertebrates. It is the only order in the class Ellioviricetes. The name Bunyavirales derives from Bunyamwera, where the original type species Bunyamwera orthobunyavirus was first discovered. Ellioviricetes is named in honor of late virologist Richard M. Elliott for his early work on bunyaviruses.

<i>Dicistroviridae</i> Family of viruses

Dicistroviridae is a family of viruses in the order Picornavirales. Invertebrates, including aphids, leafhoppers, flies, bees, ants, and silkworms, serve as natural hosts. There are 15 species in this family, assigned to three genera. Diseases associated with this family include: DCV: increased reproductive potential. extremely pathogenic when injected with high associated mortality. CrPV: paralysis and death.

<i>Gammaretrovirus</i> Genus of viruses

Gammaretrovirus is a genus in the Retroviridae family. Example species are the murine leukemia virus and the feline leukemia virus. They cause various sarcomas, leukemias and immune deficiencies in mammals, reptiles and birds.

<i>Deformed wing virus</i> Species of virus

Deformed wing virus (DWV) is an RNA virus, one of 22 known viruses affecting honey bees. While most commonly infecting the honey bee, Apis mellifera, it has also been documented in other bee species, like Bombus terrestris, thus, indicating it may have a wider host specificity than previously anticipated. The virus was first isolated from a sample of symptomatic honeybees from Japan in the early 1980s and is currently distributed worldwide. It is found also in pollen baskets and commercially reared bumblebees. Its main vector in A. mellifera is the Varroa mite. It is named after what is usually the most obvious deformity it induces in the development of a honeybee pupa, which is shrunken and deformed wings, but other developmental deformities are often present.

<i>Sindbis virus</i> Species of virus

Sindbis virus (SINV) is a member of the Togaviridae family, in the Alphavirus genus. The virus was first isolated in 1952 in Cairo, Egypt. The virus is transmitted by mosquitoes. SINV is linked to Pogosta disease (Finland), Ockelbo disease (Sweden) and Karelian fever (Russia). In humans, the symptoms include arthralgia, rash and malaise. Sindbis virus is widely and continuously found in insects and vertebrates in Eurasia, Africa, and Oceania. Clinical infection and disease in humans however has almost only been reported from Northern Europe, where SINV is endemic and where large outbreaks occur intermittently. Cases are occasionally reported in Australia, China, and South Africa.

The following outline is provided as an overview of and topical guide to genetics:

<span class="mw-page-title-main">Iflaviridae</span> Family of viruses

Iflaviridae is a family of positive sense RNA viruses insect-infecting viruses. Some of the insects commonly infected by iflaviruses include aphids, leafhoppers, flies, bees, ants, silkworms and wasps. The name "Ifla" is derived from the name "Infectious flacherie virus", a member species. There is one genus (Iflavirus) and 16 species in this family.

<span class="mw-page-title-main">Digital transcriptome subtraction</span>

Digital transcriptome subtraction (DTS) is a bioinformatics method to detect the presence of novel pathogen transcripts through computational removal of the host sequences. DTS is the direct in silico analogue of the wet-lab approach representational difference analysis (RDA), and is made possible by unbiased high-throughput sequencing and the availability of a high-quality, annotated reference genome of the host. The method specifically examines the etiological agent of infectious diseases and is best known for discovering Merkel cell polyomavirus, the suspect causative agent in Merkel-cell carcinoma.

<span class="mw-page-title-main">Viral metagenomics</span>

Viral metagenomics uses metagenomic technologies to detect viral genomic material from diverse environmental and clinical samples. Viruses are the most abundant biological entity and are extremely diverse; however, only a small fraction of viruses have been sequenced and only an even smaller fraction have been isolated and cultured. Sequencing viruses can be challenging because viruses lack a universally conserved marker gene so gene-based approaches are limited. Metagenomics can be used to study and analyze unculturable viruses and has been an important tool in understanding viral diversity and abundance and in the discovery of novel viruses. For example, metagenomics methods have been used to describe viruses associated with cancerous tumors and in terrestrial ecosystems.

<span class="mw-page-title-main">Chronic bee paralysis virus</span> Virus which infects bees

Chronic bee paralysis virus (CBPV) commonly affects adult Apis mellifera honey bees and causes a chronic paralysis that can easily spread to other members of a colony. Bees infected with CBPV begin to show symptoms after 5 days and die a few days after. Chronic bee paralysis virus infection is a factor that can contribute to or cause the sudden collapse of honeybee colonies. Since honeybees serve a vital role in ecological resilience, it is important to understand factors and diseases that threaten them.

Aparavirus is a genus of viruses in the order Picornavirales, in the family Dicistroviridae. Invertebrates, honeybee, and bumblebees serve as natural hosts. There are six species in this genus. Diseases associated with this genus include: ABPV: paralysis. This virus plays a role in sudden collapse of honey bee colonies infested with the parasitic mite varroa destructor.

Third-generation sequencing is a class of DNA sequencing methods which produce longer sequence reads, under active development since 2008.

Grapevine Pinot gris virus (GPGV) is a positive sense single-stranded RNA virus in the genus Trichovirus. It affects the growth of grapevine plants' leaves and fruit, and is similar to grapevine berry inner-necrosis virus.

<i>Black queen cell virus</i> Species of virus

The black queen cell virus (BQCV) is a virus that infects honey bees, specifically Apis mellifera, Apis florea, and Apis dorsata. Infection of the latter two species is more recent and can be attributed to genetic similarity and geographical closeness.

ORF1ab refers collectively to two open reading frames (ORFs), ORF1a and ORF1b, that are conserved in the genomes of nidoviruses, a group of viruses that includes coronaviruses. The genes express large polyproteins that undergo proteolysis to form several nonstructural proteins with various functions in the viral life cycle, including proteases and the components of the replicase-transcriptase complex (RTC). Together the two ORFs are sometimes referred to as the replicase gene. They are related by a programmed ribosomal frameshift that allows the ribosome to continue translating past the stop codon at the end of ORF1a, in a -1 reading frame. The resulting polyproteins are known as pp1a and pp1ab.

References

  1. 1 2 3 4 5 6 7 8 9 Sébastien A, Lester PJ, Hall RJ, Wang J, Moore NE, Gruber MA (September 2015). "Invasive ants carry novel viruses in their new range and form reservoirs for a honeybee pathogen". Biology Letters. 11 (9): 20150610. doi:10.1098/rsbl.2015.0610. PMC   4614435 . PMID   26562935.
  2. "Virus Taxonomy: 2022 Release". International Committee on Taxonomy of Viruses (ICTV). March 2023. Retrieved 13 August 2023.
  3. "Taxonomy browser (Linepithema humile virus 1)". National Center for Biotechnology Information (NCBI). Retrieved 13 August 2023.
  4. 1 2 Gruber MA, Cooling M, Baty JW, Buckley K, Friedlander A, Quinn O, Russell JF, Sébastien A, Lester PJ (June 2017). "Single-stranded RNA viruses infecting the invasive Argentine ant, Linepithema humile". Scientific Reports. 7 (1): 3304. Bibcode:2017NatSR...7.3304G. doi:10.1038/s41598-017-03508-z. PMC   5468335 . PMID   28607437.
  5. 1 2 3 4 Smith CD, Zimin A, Holt C, Abouheif E, Benton R, Cash E, et al. (April 2011). "Draft genome of the globally widespread and invasive Argentine ant (Linepithema humile)". Proceedings of the National Academy of Sciences of the United States of America. 108 (14): 5673–8. Bibcode:2011PNAS..108.5673S. doi: 10.1073/pnas.1008617108 . PMC   3078359 . PMID   21282631.