List of things named after Karl Weierstrass

Last updated

This is a list of things named after the German mathematician Karl Weierstrass.

Contents

Mathematical concepts, theorems, and the like

Named after Weierstrass and other persons

Named after Weierstrass alone

Typography

Celestial bodies or features of them

Research institutes

Related Research Articles

Elliptic curve Algebraic curve

In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point O. An elliptic curve is defined over a field K and describes points in K2, the Cartesian product of K with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which, after a linear change of variables, consists of solutions (x,y) for:

In mathematical analysis, the Weierstrass approximation theorem states that every continuous function defined on a closed interval [a, b] can be uniformly approximated as closely as desired by a polynomial function. Because polynomials are among the simplest functions, and because computers can directly evaluate polynomials, this theorem has both practical and theoretical relevance, especially in polynomial interpolation. The original version of this result was established by Karl Weierstrass in 1885 using the Weierstrass transform.

In the mathematical field of complex analysis, elliptic functions are a special kind of meromorphic functions, that satisfy two periodicity conditions. They are named elliptic functions because they come from elliptic integrals. Originally those integrals occurred at the calculation of the arc length of an ellipse.

Karl Weierstrass German mathematician

Karl Theodor Wilhelm Weierstrass was a German mathematician often cited as the "father of modern analysis". Despite leaving university without a degree, he studied mathematics and trained as a school teacher, eventually teaching mathematics, physics, botany and gymnastics. He later received an honorary doctorate and became professor of mathematics in Berlin.

Ferdinand Georg Frobenius German mathematician

Ferdinand Georg Frobenius was a German mathematician, best known for his contributions to the theory of elliptic functions, differential equations, number theory, and to group theory. He is known for the famous determinantal identities, known as Frobenius–Stickelberger formulae, governing elliptic functions, and for developing the theory of biquadratic forms. He was also the first to introduce the notion of rational approximations of functions, and gave the first full proof for the Cayley–Hamilton theorem. He also lent his name to certain differential-geometric objects in modern mathematical physics, known as Frobenius manifolds.

In mathematics, the Weierstrass preparation theorem is a tool for dealing with analytic functions of several complex variables, at a given point P. It states that such a function is, up to multiplication by a function not zero at P, a polynomial in one fixed variable z, which is monic, and whose coefficients of lower degree terms are analytic functions in the remaining variables and zero at P.

Weierstrass elliptic function Class of mathematical functions

In mathematics, the Weierstrass elliptic functions are elliptic functions that take a particularly simple form. They are named for Karl Weierstrass. This class of functions are also referred to as ℘-functions and they are usually denoted by the symbol ℘, a uniquely fancy script p. They play an important role in the theory of elliptic functions. A ℘-function together with its derivative can be used to parameterize elliptic curves and they generate the field of elliptic functions with respect to a given period lattice.

Adolf Hurwitz German mathematician

Adolf Hurwitz was a German mathematician who worked on algebra, analysis, geometry and number theory.

Sergei Bernstein Soviet mathematician

Sergei Natanovich Bernstein was a Soviet and Russian mathematician of Jewish origin known for contributions to partial differential equations, differential geometry, probability theory, and approximation theory.

In mathematics, the Weierstrass functions are special functions of a complex variable that are auxiliary to the Weierstrass elliptic function. They are named for Karl Weierstrass. The relation between the sigma, zeta, and functions is analogous to that between the sine, cotangent, and squared cosecant functions: the logarithmic derivative of the sine is the cotangent, whose derivative is negative the squared cosecant.

Weierstrass–Enneper parameterization Construction for minimal surfaces

In mathematics, the Weierstrass–Enneper parameterization of minimal surfaces is a classical piece of differential geometry.

Alfred Enneper was a German mathematician. Enneper earned his PhD from the Georg-August-Universität Göttingen in 1856, under the supervision of Peter Gustav Lejeune Dirichlet, for his dissertation about functions with complex arguments. After his habilitation in 1859 in Göttingen, he was from 1870 on Professor (Extraordinarius) at Göttingen.

Enneper surface

In differential geometry and algebraic geometry, the Enneper surface is a self-intersecting surface that can be described parametrically by:

In Riemannian geometry, a Bryant surface is a 2-dimensional surface embedded in 3-dimensional hyperbolic space with constant mean curvature equal to 1. These surfaces take their name from the geometer Robert Bryant, who proved that every simply-connected minimal surface in 3-dimensional Euclidean space is isometric to a Bryant surface by a holomorphic parameterization analogous to the (Euclidean) Weierstrass–Enneper parameterization.

This is a timeline of the theory of abelian varieties in algebraic geometry, including elliptic curves.

Bours minimal surface

In mathematics, Bour's minimal surface is a two-dimensional minimal surface, embedded with self-crossings into three-dimensional Euclidean space. It is named after Edmond Bour, whose work on minimal surfaces won him the 1861 mathematics prize of the French Academy of Sciences.

Richmond surface Minimal surface in differential geometry

In differential geometry, a Richmond surface is a minimal surface first described by Herbert William Richmond in 1904. It is a family of surfaces with one planar end and one Enneper surface-like self-intersecting end.

In mathematics, Legendre's relation can be expressed in either of two forms: as a relation between complete elliptic integrals, or as a relation between periods and quasiperiods of elliptic functions. The two forms are equivalent as the periods and quasiperiods can be expressed in terms of complete elliptic integrals. It was introduced by A. M. Legendre.