Local criterion for flatness

Last updated

In algebra, the local criterion for flatness gives conditions one can check to show flatness of a module. [1]

Contents

Statement

Given a commutative ring A, an ideal I and an A-module M, suppose either

or

Then the following are equivalent: [2]

  1. M is a flat module.
  2. is flat over and .
  3. For each , is flat over .
  4. In the notations of 3., is -flat and the natural -module surjection
    is an isomorphism; i.e., each is an isomorphism.

The assumption that “A is a Noetherian ring” is used to invoke the Artin–Rees lemma and can be weakened; see [3]

Proof

Following SGA 1, Exposé IV, we first prove a few lemmas, which are interesting themselves. (See also this blog post by Akhil Mathew for a proof of a special case.)

Lemma 1  Given a ring homomorphism and an -module , the following are equivalent.

  1. For every -module ,
  2. is -flat and

Moreover, if , the above two are equivalent to

  1. for every -module killed by some power of .

Proof: The equivalence of the first two can be seen by studying the Tor spectral sequence. Here is a direct proof: if 1. is valid and is an injection of -modules with cokernel C, then, as A-modules,

.

Since and the same for , this proves 2. Conversely, considering where F is B-free, we get:

.

Here, the last map is injective by flatness and that gives us 1. To see the "Moreover" part, if 1. is valid, then and so

By descending induction, this implies 3. The converse is trivial.

Lemma 2  Let be a ring and a module over it. If for every , then the natural grade-preserving surjection

is an isomorphism. Moreover, when I is nilpotent,

is flat if and only if is flat over and is an isomorphism.

Proof: The assumption implies that and so, since tensor product commutes with base extension,

.

For the second part, let denote the exact sequence and . Consider the exact sequence of complexes:

Then (it is so for large and then use descending induction). 3. of Lemma 1 then implies that is flat.

Proof of the main statement.

: If is nilpotent, then, by Lemma 1, and is flat over . Thus, assume that the first assumption is valid. Let be an ideal and we shall show is injective. For an integer , consider the exact sequence

Since by Lemma 1 (note kills ), tensoring the above with , we get:

.

Tensoring with , we also have:

We combine the two to get the exact sequence:

Now, if is in the kernel of , then, a fortiori, is in . By the Artin–Rees lemma, given , we can find such that . Since , we conclude .

follows from Lemma 2.

: Since , the condition 4. is still valid with replaced by . Then Lemma 2 says that is flat over .

Tensoring with M, we see is the kernel of . Thus, the implication is established by an argument similar to that of

Application: characterization of an étale morphism

The local criterion can be used to prove the following:

Proposition  Given a morphism of finite type between Noetherian schemes, is étale (flat and unramified) if and only if for each x in X, f is an analytically local isomorphism near x; i.e., with , is an isomorphism.

Proof: Assume that is an isomorphism and we show f is étale. First, since is faithfully flat (in particular is a pure subring), we have:

.

Hence, is unramified (separability is trivial). Now, that is flat follows from (1) the assumption that the induced map on completion is flat and (2) the fact that flatness descends under faithfully flat base change (it shouldn’t be hard to make sense of (2)).

Next, we show the converse: by the local criterion, for each n, the natural map is an isomorphism. By induction and the five lemma, this implies is an isomorphism for each n. Passing to limit, we get the asserted isomorphism.

Mumford’s Red Book gives an extrinsic proof of the above fact (Ch. III, § 5, Theorem 3).

Miracle flatness theorem

B. Conrad calls the next theorem the miracle flatness theorem. [4]

Theorem  Let be a local ring homomorphism between local Noetherian rings. If S is flat over R, then

.

Conversely, if this dimension equality holds, if R is regular and if S is Cohen–Macaulay (e.g., regular), then S is flat over R.

Notes

Related Research Articles

In mathematics, the adele ring of a global field is a central object of class field theory, a branch of algebraic number theory. It is the restricted product of all the completions of the global field, and is an example of a self-dual topological ring.

In commutative algebra and algebraic geometry, localization is a formal way to introduce the "denominators" to a given ring or module. That is, it introduces a new ring/module out of an existing ring/module R, so that it consists of fractions such that the denominator s belongs to a given subset S of R. If S is the set of the non-zero elements of an integral domain, then the localization is the field of fractions: this case generalizes the construction of the ring of rational numbers from the ring of integers.

In mathematics, certain functors may be derived to obtain other functors closely related to the original ones. This operation, while fairly abstract, unifies a number of constructions throughout mathematics.

In algebra, a module homomorphism is a function between modules that preserves the module structures. Explicitly, if M and N are left modules over a ring R, then a function is called an R-module homomorphism or an R-linear map if for any x, y in M and r in R,

In algebra, a flat module over a ring R is an R-module M such that taking the tensor product over R with M preserves exact sequences. A module is faithfully flat if taking the tensor product with a sequence produces an exact sequence if and only if the original sequence is exact.

In mathematics, in particular in the theory of schemes in algebraic geometry, a flat morphismf from a scheme X to a scheme Y is a morphism such that the induced map on every stalk is a flat map of rings, i.e.,

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.

In mathematics, the Tor functors are the derived functors of the tensor product of modules over a ring. Along with the Ext functor, Tor is one of the central concepts of homological algebra, in which ideas from algebraic topology are used to construct invariants of algebraic structures. The homology of groups, Lie algebras, and associative algebras can all be defined in terms of Tor. The name comes from a relation between the first Tor group Tor1 and the torsion subgroup of an abelian group.

In mathematics, ideal theory is the theory of ideals in commutative rings; and is the precursor name for the contemporary subject of commutative algebra. The name grew out of the central considerations, such as the Lasker–Noether theorem in algebraic geometry, and the ideal class group in algebraic number theory, of the commutative algebra of the first quarter of the twentieth century. It was used in the influential van der Waerden text on abstract algebra from around 1930.

In mathematics, more specifically abstract algebra and commutative algebra, Nakayama's lemma — also known as the Krull–Azumaya theorem — governs the interaction between the Jacobson radical of a ring and its finitely generated modules. Informally, the lemma immediately gives a precise sense in which finitely generated modules over a commutative ring behave like vector spaces over a field. It is an important tool in algebraic geometry, because it allows local data on algebraic varieties, in the form of modules over local rings, to be studied pointwise as vector spaces over the residue field of the ring.

In mathematics, the tensor product of modules is a construction that allows arguments about bilinear maps to be carried out in terms of linear maps. The module construction is analogous to the construction of the tensor product of vector spaces, but can be carried out for a pair of modules over a commutative ring resulting in a third module, and also for a pair of a right-module and a left-module over any ring, with result an abelian group. Tensor products are important in areas of abstract algebra, homological algebra, algebraic topology, algebraic geometry, operator algebras and noncommutative geometry. The universal property of the tensor product of vector spaces extends to more general situations in abstract algebra. It allows the study of bilinear or multilinear operations via linear operations. The tensor product of an algebra and a module can be used for extension of scalars. For a commutative ring, the tensor product of modules can be iterated to form the tensor algebra of a module, allowing one to define multiplication in the module in a universal way.

In algebraic geometry, a morphism of schemes generalizes a morphism of algebraic varieties just as a scheme generalizes an algebraic variety. It is, by definition, a morphism in the category of schemes.

In commutative algebra, an element b of a commutative ring B is said to be integral overA, a subring of B, if there are n ≥ 1 and aj in A such that

In mathematics, Hochschild homology is a homology theory for associative algebras over rings. There is also a theory for Hochschild homology of certain functors. Hochschild cohomology was introduced by Gerhard Hochschild (1945) for algebras over a field, and extended to algebras over more general rings by Henri Cartan and Samuel Eilenberg (1956).

Faithfully flat descent is a technique from algebraic geometry, allowing one to draw conclusions about objects on the target of a faithfully flat morphism. Such morphisms, that are flat and surjective, are common, one example coming from an open cover.

In mathematics, dimension theory is the study in terms of commutative algebra of the notion dimension of an algebraic variety. The need of a theory for such an apparently simple notion results from the existence of many definitions of the dimension that are equivalent only in the most regular cases. A large part of dimension theory consists in studying the conditions under which several dimensions are equal, and many important classes of commutative rings may be defined as the rings such that two dimensions are equal; for example, a regular ring is a commutative ring such that the homological dimension is equal to the Krull dimension.

This is a glossary of algebraic geometry.

In algebraic geometry, the theorem on formal functions states the following:

In mathematics, a sheaf of O-modules or simply an O-module over a ringed space is a sheaf F such that, for any open subset U of X, F(U) is an O(U)-module and the restriction maps F(U) → F(V) are compatible with the restriction maps O(U) → O(V): the restriction of fs is the restriction of f times that of s for any f in O(U) and s in F(U).

In mathematics, the base change theorems relate the direct image and the pull-back of sheaves. More precisely, they are about the base change map, given by the following natural transformation of sheaves:

References