This article may be too technical for most readers to understand.(September 2011) |
The Lockman Hole is an area of the sky in which minimal amounts of neutral hydrogen gas are observed from the perspective of Earth. The Lockman Hole is a relatively clear window on distant objects, which makes it an attractive area of the sky for observational astronomy surveys. It is located near the pointer stars of the Big Dipper in the constellation Ursa Major and is ~15 square degrees in size. [1] [2]
The Lockman Hole is named after its discoverer, astronomer F. Jay Lockman.
The Lockman Hole is located at about RA 10h 45m, Dec. +58° and is defined by a region of low neutral hydrogen gas and dust column density. [3] Column density is a commonly used measure in astronomy for the quantity of a given chemical element or molecule in a certain direction. In this region, the typical column density of neutral hydrogen is NH = 0.6 x 1020 cm−2. [4] This column density is moderately lower than typical values near the galactic poles, where NH 1020 cm−2, and H I column densities of NH > 1021 cm−2 are common at low galactic latitudes and towards H I clouds. [5]
The region around B1950.0 RA 10h 45m Dec 57° 20′ has a minimum NH of 4.5 x 1019 cm−2. [3] There is a diffuse cloud covering half of the field. [3] [6]
The Lockman Hole East is a subregion of the Lockman Hole centered at J2000.0 RA 10h 52m Dec +57°. [7]
The Lockman Hole North-west (LHNW) is a region that appears about as wide as the moon centered at J2000.0 RA 10h 34m Dec +57° 40′., [8] [9] with a column density of NH = 5.72 x 1019 cm−2. [5]
Clouds of neutral hydrogen are ubiquitous in the Milky Way galaxy, and effectively absorb photons that are energetic enough to ionize hydrogen, which requires an energy of 13.6 electron volts (in the extreme ultraviolet range). Even the relatively small amounts of hydrogen in the Lockman Hole absorb most radiation at and just above energies of 13.6 electron volts, but even so it transmits extreme ultraviolet and soft x-ray radiation from extragalactic objects to a greater degree than other areas of the sky.
Neutral hydrogen is also associated with diffuse emission at infrared wavelengths that can confuse observations of faint infrared sources.
The relatively clear field of view offered by the Lockman Hole has allowed its use to view extremely distant regions of the universe. Observations by the Spectral and Photometric Imaging Receiver (SPIRE) instrument aboard the Herschel Space Telescope of the Lockman Hole have imaged thousands of extremely distant galaxies that appear as they did 10–12 billion years ago. [10]
This field of view also contains hundreds of astronomical X-ray sources, some of them supermassive black holes. The Chandra X-ray Observatory and ROSAT have been used to study X-ray sources from the Lockman Hole. [4] Some 75 X-ray sources are observed with the PSPC of ROSAT. [4]
Detailed X-ray spectral analysis has been performed on 123 X-ray sources in the Lockman Hole using XMM-Newton. [11]
The diffuse X-ray background (XRB) has also been studied in the area. [12] [13]
Active galactic nuclei have also been studied in the area, for example MBC2005. [11]
In astronomy, the interstellar medium (ISM) is the matter and radiation that exist in the space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as dust and cosmic rays. It fills interstellar space and blends smoothly into the surrounding intergalactic space. The energy that occupies the same volume, in the form of electromagnetic radiation, is the interstellar radiation field. Although the density of atoms in the ISM is usually far below that in the best laboratory vacuums, the mean free path between collisions is short compared to typical interstellar lengths, so on these scales the ISM behaves as a gas (more precisely, as a plasma: it is everywhere at least slightly ionized), responding to pressure forces, and not as a collection of non-interacting particles.
The Small Magellanic Cloud (SMC), or Nubecula Minor, is a dwarf galaxy near the Milky Way. Classified as a dwarf irregular galaxy, the SMC has a D25 isophotal diameter of about 5.78 kiloparsecs (18,900 light-years), and contains several hundred million stars. It has a total mass of approximately 7 billion solar masses. At a distance of about 200,000 light-years, the SMC is among the nearest intergalactic neighbors of the Milky Way and is one of the most distant objects visible to the naked eye.
The Galactic Center is the rotational center and the barycenter of the Milky Way. Its central massive object is a supermassive black hole of about 4 million solar masses, which is called Sagittarius A*, a compact radio source which is almost exactly at the galactic rotational center. The Galactic Center is approximately 8 kiloparsecs (26,000 ly) away from Earth in the direction of the constellations Sagittarius, Ophiuchus, and Scorpius, where the Milky Way appears brightest, visually close to the Butterfly Cluster (M6) or the star Shaula, south to the Pipe Nebula.
Rashid Alievich Sunyaev is a German, Soviet, and Russian astrophysicist of Tatar descent. He got his MS degree from the Moscow Institute of Physics and Technology (MIPT) in 1966. He became a professor at MIPT in 1974. Sunyaev was the head of the High Energy Astrophysics Department of the Russian Academy of Sciences, and has been chief scientist of the Academy's Space Research Institute since 1992. He has also been a director of the Max Planck Institute for Astrophysics in Garching, Germany since 1996, and Maureen and John Hendricks Distinguished Visiting Professor in the School of Natural Sciences at the Institute for Advanced Study in Princeton since 2010.
Centaurus A is a galaxy in the constellation of Centaurus. It was discovered in 1826 by Scottish astronomer James Dunlop from his home in Parramatta, in New South Wales, Australia. There is considerable debate in the literature regarding the galaxy's fundamental properties such as its Hubble type and distance. NGC 5128 is one of the closest radio galaxies to Earth, so its active galactic nucleus has been extensively studied by professional astronomers. The galaxy is also the fifth-brightest in the sky, making it an ideal amateur astronomy target. It is only visible from the southern hemisphere and low northern latitudes.
In modern models of physical cosmology, a dark matter halo is a basic unit of cosmological structure. It is a hypothetical region that has decoupled from cosmic expansion and contains gravitationally bound matter. A single dark matter halo may contain multiple virialized clumps of dark matter bound together by gravity, known as subhalos. Modern cosmological models, such as ΛCDM, propose that dark matter halos and subhalos may contain galaxies. The dark matter halo of a galaxy envelops the galactic disc and extends well beyond the edge of the visible galaxy. Thought to consist of dark matter, halos have not been observed directly. Their existence is inferred through observations of their effects on the motions of stars and gas in galaxies and gravitational lensing. Dark matter halos play a key role in current models of galaxy formation and evolution. Theories that attempt to explain the nature of dark matter halos with varying degrees of success include cold dark matter (CDM), warm dark matter, and massive compact halo objects (MACHOs).
In astronomy a superbubble or supershell is a cavity which is hundreds of light years across and is populated with hot (106 K) gas atoms, less dense than the surrounding interstellar medium, blown against that medium and carved out by multiple supernovae and stellar winds. The winds, passage and gravity of newly born stars strip superbubbles of any other dust or gas. The Solar System lies near the center of an old superbubble, known as the Local Bubble, whose boundaries can be traced by a sudden rise in dust extinction of exterior stars at distances greater than a few hundred light years.
An HI region or H I region (read H one) is a cloud in the interstellar medium composed of neutral atomic hydrogen (HI), in addition to the local abundance of helium and other elements. (H is the chemical symbol for hydrogen, and "I" is the Roman numeral. It is customary in astronomy to use the Roman numeral I for neutral atoms, II for singly-ionised—HII is H+ in other sciences—III for doubly-ionised, e.g. OIII is O++, etc.) These regions do not emit detectable visible light (except in spectral lines from elements other than hydrogen) but are observed by the 21-cm (1,420 MHz) region spectral line. This line has a very low transition probability, so it requires large amounts of hydrogen gas for it to be seen. At ionization fronts, where HI regions collide with expanding ionized gas (such as an H II region), the latter glows brighter than it otherwise would. The degree of ionization in an HI region is very small at around 10−4 (i.e. one particle in 10,000). At typical interstellar pressures in galaxies like the Milky Way, HI regions are most stable at temperatures of either below 100 K or above several thousand K; gas between these temperatures heats or cools very quickly to reach one of the stable temperature regimes. Within one of these phases, the gas is usually considered isothermal, except near an expanding H II region. Near an expanding H II region is a dense HI region, separated from the undisturbed HI region by a shock front and from the H II region by an ionization front.
The Perseus cluster is a cluster of galaxies in the constellation Perseus. It has a recession speed of 5,366 km/s and a diameter of 863′. It is one of the most massive objects in the known universe, containing thousands of galaxies immersed in a vast cloud of multimillion-degree gas.
The Cartwheel Galaxy (also known as ESO 350-40 or PGC 2248) is a lenticular ring galaxy about 500 million light-years away in the constellation Sculptor. It has a D25 isophotal diameter of 44.23 kiloparsecs (144,300 light-years), and a mass of about 2.9–4.8 × 109 solar masses; its outer ring has a circular velocity of 217 km/s.
The Cygnus Loop is a large supernova remnant (SNR) in the constellation Cygnus, an emission nebula measuring nearly 3° across. Some arcs of the loop, known collectively as the Veil Nebula or Cirrus Nebula, emit in the visible electromagnetic range. Radio, infrared, and X-ray images reveal the complete loop.
NGC 3227 is an intermediate spiral galaxy that is interacting with the dwarf elliptical galaxy NGC 3226. The two galaxies are one of several examples of a spiral with a dwarf elliptical companion that are listed in the Atlas of Peculiar Galaxies. Both galaxies may be found in the constellation Leo. It is a member of the NGC 3227 Group of galaxies, which is a member of the Leo II Groups, a series of galaxies and galaxy clusters strung out from the right edge of the Virgo Supercluster.
Circinus X-1 is an X-ray binary star system that includes a neutron star. Observation of Circinus X-1 in July 2007 revealed the presence of X-ray jets normally found in black hole systems; it is the first of the sort to be discovered that displays this similarity to black holes. Circinus X-1 may be among the youngest X-ray binaries observed.
Astrophysical X-ray sources are astronomical objects with physical properties which result in the emission of X-rays.
NGC 3860 is a spiral galaxy located about 340 million light-years away in the constellation Leo. NGC 3860 was discovered by astronomer William Herschel on April 27, 1785. The galaxy is a member of the Leo Cluster and is a low-luminosity AGN (LLAGN). Gavazzi et al. however classified NGC 3860 as a strong AGN which may have been triggered by a supermassive black hole in the center of the galaxy.
NGC 1395 is an elliptical galaxy located in the constellation Eridanus. It is located at a distance of circa 75 million light years from Earth, which, given its apparent dimensions, means that NGC 1395 is about 130,000 light years across. It was discovered by William Herschel on November 17, 1784. It is a member of the Eridanus Cluster.
NGC 4278 is an elliptical galaxy located in the constellation Coma Berenices. It is located at a distance of circa 55 million light years from Earth, which, given its apparent dimensions, means that NGC 4278 is about 65,000 light years across. It was discovered by William Herschel on March 13, 1785. NGC 4278 is part of the Herschel 400 Catalogue and can be found about one and 3/4 of a degree northwest of Gamma Comae Berenices even with a small telescope.
NGC 2273 is a barred spiral galaxy located in the constellation Lynx. It is located at a distance of circa 95 million light years from Earth, which, given its apparent dimensions, means that NGC 2273 is about 100,000 light years across. It was discovered by Nils Dunér on September 15, 1867.
NGC 2110 is a lenticular galaxy located in the constellation Orion. It is located at a distance of about 120 million light years from Earth, which, given its apparent dimensions, means that NGC 2110 is about 90,000 light years across. It was discovered by William Herschel on October 5, 1785. It is a Seyfert galaxy.
{{cite journal}}
: CS1 maint: multiple names: authors list (link)