Low smoke zero halogen

Last updated

Low smoke zero halogen or low smoke free of halogen (LSZH or LSOH or LS0H or LSFH or OHLS or ZHFR) is a material classification typically used for cable jacketing in the wire and cable industry. LSZH cable jacketing is composed of thermoplastic or thermoset compounds that emit limited smoke and no halogen when exposed to high sources of heat. [1]

Contents

Description

The first commercial thermoplastic LSZH material for cable jacketing was invented by Richard Skipper in 1979 and patented by Raychem Corporation. [2] This invention resolved the challenge of incorporating sufficient inorganic filler, aluminium trihydrate (ALTH), into an appropriate thermoplastic matrix to suppress the fire and allow a char to be formed, which reduced emission of poisonous carbon gases and also smoke and carbon particles, whilst maintaining electrical insulation properties and physical properties required by the end application. The preferred inorganic filler to achieve flame retardation continues to be aluminium trihydrate (ALTH). In the event of a fire this material undergoes an endothermic chemical reaction

2Al(OH)3 → Al2O3 + 3H2O (180 °C)

that absorbs heat energy and releases steam when the compound reaches a certain temperature. It is critical that the decomposition of the polymer(s) used to carry the filler happens at approximately the same temperature. The steam disrupts combustion of the evolved gases and helps form a char layer that protects the remaining material and traps particulates. The high level of filler required (≈ 60%) also replaces the base polymer reducing the total amount of fuel available for combustion.

Low smoke zero halogen cable considerably reduces the amount of toxic and corrosive gas emitted during combustion. When burned, a low-smoke zero halogen cable emits a less optically dense smoke that releases at a lower rate. During a fire, a low-smoke cable is desirable because it reduces the amount and density of the smoke, which makes exiting a space easier for occupants as well as increases the safety of firefighting operations. This type of material is typically used in poorly ventilated areas such as aircraft, rail carriages, tanks, subsea and offshore installations, submarines or ships. It is also used extensively in the rail industry, wherever high voltage or track signal wires must be run into and through tunnel systems. The nuclear industry is another area where LSZH cables have been and will be used in the future. Major cable manufacturers have been producing LSZH cables for nuclear facilities since the early 1990s. Construction of new nuclear plants will almost certainly involve extensive use of LSZH cable. This will reduce the chance of toxic gases accumulating in those areas where personnel are working and the lack of corrosive gases where there are computer controlled systems will reduce the possibility of wires being damaged by fire resulting in a short circuit fault.

Since the 1970s, the wire and cable industry has been using low-smoke, low-halogen materials in a number of applications. The introduction of a thermoplastic LSZH extended its use to accessories such as heat shrink tubing, labelling and fixtures. The objective was to create a wire and cable jacketing system that was not only flame retardant but also did not generate dense, obscuring smoke and less toxic or corrosive gases. In the military field its introduction was accelerated after 1982 following the dense black smoke emitted from HMS Sheffield after being hit by an Exocet missile in the Falklands war. Several fires, such as the King's Cross fire in London that killed 31 people in London's underground in 1987, increased the awareness of the contribution that wire and cable jacketing makes in a fire. As a result, there has been an increased use of LSZH cables. With an increase in the amount of cable found in residential, commercial and industrial applications in recent years, there is a greater fuel load in the event of a fire and LSZH systems have a major role to play in protecting the public.

Several standards describe the processes used for measuring smoke output during combustion. For military applications Def Stan 02–711 in the UK and ASTM E662 in the US which are both based on an ASTM STP No. 422 pages 166–204, 1967 modified by AMTE, Portsmouth in the UK [3] and superseded by E662 in the US. During these tests a specified material sample is standardised and then exposed to a radiant heat source; the optical density of the smoke given off is photometrically measured.[ clarification needed ] There are various means of measuring optical density: peak smoke release rate, total smoke released, and smoke density at various points and durations during the test. Results must be below a certain value and the material must pass the burn test in order for the material to be labelled as low smoke.

These tests are conducted under laboratory conditions and cannot claim to replicate the range of conditions expected in a real fire scenario. However they do provide a measure by which the potential smoke emission of materials can be assessed and dangerous materials identified before proceeding to further testing of preferred materials, if deemed necessary.

Related Research Articles

Smoke Mass of airborne particulates and gases

Smoke is a collection of airborne particulates and gases emitted when a material undergoes combustion or pyrolysis, together with the quantity of air that is entrained or otherwise mixed into the mass. It is commonly an unwanted by-product of fires, but may also be used for pest control (fumigation), communication, defensive and offensive capabilities in the military, cooking, or smoking. It is used in rituals where incense, sage, or resin is burned to produce a smell for spiritual or magical purposes. It can also be a flavoring agent and preservative.

Welding Fabrication or sculptural process for joining materials

Welding is a fabrication process that joins materials, usually metals or thermoplastics, by using high heat to melt the parts together and allowing them to cool, causing fusion. Welding is distinct from lower temperature metal-joining techniques such as brazing and soldering, which do not melt the base metal.

Halogen lamp Incandescent lamp variety

A halogen lamp, also known as a tungsten halogen, quartz-halogen or quartz iodine lamp, is an incandescent lamp consisting of a tungsten filament sealed into a compact transparent envelope that is filled with a mixture of an inert gas and a small amount of a halogen such as iodine or bromine. The combination of the halogen gas and the tungsten filament produces a halogen cycle chemical reaction which redeposits evaporated tungsten to the filament, increasing its life and maintaining the clarity of the envelope. This allows the filament to operate at a higher temperature than a standard incandescent lamp of similar power and operating life; this also produces light with higher luminous efficacy and color temperature. The small size of halogen lamps permits their use in compact optical systems for projectors and illumination. The small glass envelope may be enclosed in a much larger outer glass bulb for a bigger package; the outer jacket will be at a much lower and safer temperature, and it also protects the hot bulb from harmful contamination and makes the bulb mechanically more similar to a conventional lamp that it might replace.

Thermoplastic Plastic that becomes soft when heated and hard when cooled

A thermoplastic, or thermosoftening plastic, is a plastic polymer material that becomes pliable or moldable at a certain elevated temperature and solidifies upon cooling.

Electrical wiring Electrical installation of cabling

Electrical wiring is an electrical installation of cabling and associated devices such as switches, distribution boards, sockets, and light fittings in a structure.

Power cable

A power cable is an electrical cable, an assembly of one or more electrical conductors, usually held together with an overall sheath. The assembly is used for transmission of electrical power. Power cables may be installed as permanent wiring within buildings, buried in the ground, run overhead, or exposed. Power cables that are bundled inside thermoplastic sheathing and that are intended to be run inside a building are known as NM-B.

Mineral-insulated copper-clad cable

Mineral-insulated copper-clad cable is a variety of electrical cable made from copper conductors inside a copper sheath, insulated by inorganic magnesium oxide powder. The name is often abbreviated to MICC or MI cable, and colloquially known as pyro. A similar product sheathed with metals other than copper is called mineral insulated metal sheathed (MIMS) cable.

Passive fire protection

Passive fire protection (PFP) is an integral component of the components of structural fire protection and fire safety in a building. PFP attempts to contain fires or slow the spread, such as by fire-resistant walls, floors, and doors. PFP systems must comply with the associated listing and approval use and compliance in order to provide the effectiveness expected by building codes.

RG-6 Type of coaxial cable

RG-6/U is a common type of coaxial cable used in a wide variety of residential and commercial applications. An RG-6/U coaxial cable has a characteristic impedance of 75 ohms. The term, RG-6, is generic and is applied to a wide variety of cable designs, which differ from one another in shielding characteristics, center conductor composition, dielectric type and jacket type. RG was originally a unit indicator for bulk radio frequency (RF) cable in the U.S. military's Joint Electronics Type Designation System. The suffix /U means for general utility use. The number was assigned sequentially. The RG unit indicator is no longer part of the JETDS system (MIL-STD-196E) and cable sold today under the RG-6 label is unlikely to meet military specifications. In practice, the term RG-6 is generally used to refer to coaxial cables with an 18 AWG center conductor and 75 ohm characteristic impedance.

Fire test

A fire test is a means of determining whether fire protection products meet minimum performance criteria as set out in a building code or other applicable legislation. Successful tests in laboratories holding national accreditation for testing and certification result in the issuance of a certification listing. The listing is public domain, whereas the test report itself is proprietary information belonging to the test sponsor.

Building insulation materials

Building insulation materials are the building materials which form the thermal envelope of a building or otherwise reduce heat transfer.

Infrared heater

An infrared heater or heat lamp is a body with a higher temperature which transfers energy to a body with a lower temperature through electromagnetic radiation. Depending on the temperature of the emitting body, the wavelength of the peak of the infrared radiation ranges from 780 nm to 1 mm. No contact or medium between the two bodies is needed for the energy transfer. Infrared heaters can be operated in vacuum or atmosphere.

Cone calorimeter

A cone calorimeter is a device used to study the fire behavior of small samples of various materials in condensed phase. It is widely used in the field of Fire Safety Engineering.

Smokeless fuel

Smokeless fuel is a type of solid fuel which either does not emit visible smoke, or emits minimal amounts, during combustion. These types of fuel are becoming increasingly popular in areas which ban the use of coal and other fuels such as unseasoned or wet wood which produce much smoke. Open fires are still popular with many domestic consumers, especially for those living in older houses where open fireplaces have not been removed or replaced by stoves for example. All houses older than about 1970 are fitted with open fireplaces when coal was in widespread use for domestic heating. However, modern houses are rarely equipped with fireplaces and central heating with natural gas or electricity is the usual choice. As a result of many places banning smoke and pollution, some studies have shown that overall air quality has improved along with fewer annual deaths related to smoke. Many consider smokeless fuel to be the near future replacement of all other solid fuels which cause toxic smoke emissions. The term in general is used to refer to solid fuels, such as: anthracite, coke, charcoal and hexamine fuel tablets. Smoke free carbonaceous fuels are usually supplied in the form of standard pillow-shaped briquettes made from powdered coal or charcoal. Fuel tablets are used by campers and walkers for temporary cooking using a small folding metal stove.

Thermoplastic vulcanizates (TPV) are part of the thermoplastic elastomer (TPE) family of polymers, but are closest in elastomeric properties to EPDM thermoset rubber, combining the characteristics of vulcanized rubber with the processing properties of thermoplastics. TPV is a dynamically vulcanized alloy consisting mostly of fully cured EPDM rubber particles encapsulated in a polypropylene (PP) matrix. There are almost 100 grades in the S portfolio which are used globally in the automotive, household appliance, electrical, construction and healthcare markets. The name "Santoprene" was trademarked in 1977 by Monsanto and the trademark is now owned by ExxonMobil. Similar material is available from Elastron and others.

Fire-safe polymers are polymers that are resistant to degradation at high temperatures. There is need for fire-resistant polymers in the construction of small, enclosed spaces such as skyscrapers, boats, and airplane cabins. In these tight spaces, ability to escape in the event of a fire is compromised, increasing fire risk. In fact, some studies report that about 20% of victims of airplane crashes are killed not by the crash itself but by ensuing fires. Fire-safe polymers also find application as adhesives in aerospace materials, insulation for electronics, and in military materials such as canvas tenting.

Plenum cable is electrical cable that is laid in the plenum spaces of buildings. In the United States, plastics used in the construction of plenum cable are regulated under the National Fire Protection Association standard NFPA 90A: Standard for the Installation of Air Conditioning and Ventilating Systems. All materials intended for use on wire and cables to be placed in plenum spaces are designed to meet rigorous fire safety test standards in accordance with NFPA 262 and outlined in NFPA 90A.

A dielectric gas, or insulating gas, is a dielectric material in gaseous state. Its main purpose is to prevent or rapidly quench electric discharges. Dielectric gases are used as electrical insulators in high voltage applications, e.g. transformers, circuit breakers, switchgear, radar waveguides, etc.

The Steiner tunnel test is a widely used method of testing building interior wall and ceiling finishes for their ability to support and propagate fire, and for their tendency to emit smoke. The test was developed in 1944 by Al Steiner of Underwriters Laboratories, and has been incorporated as a reference into North American standards for materials testing as tests ASTM E84, NFPA 255, UL 723 and ULC S102. These standards are in widespread use for the regulation and selection of materials for interior building construction throughout North America.

Aluminium diethyl phosphinate Chemical compound

Aluminium diethyl phosphinate is a chemical compound with formula Al(C
4
H
10
O
2
P
)3. It decomposes above 300 °C.

References

  1. MSS Fibre Glossary of Terms
  2. United States Patent 4322575
  3. A new approach to testing materials in the NBS smoke chamber, A. Routley and R. Skipper Fire and Materials Volume 4, Issue 2 June 1980 Pages 98–103