Lucas's theorem

Last updated

In number theory, Lucas's theorem expresses the remainder of division of the binomial coefficient by a prime number p in terms of the base p expansions of the integers m and n.

Contents

Lucas's theorem first appeared in 1878 in papers by Édouard Lucas. [1]

Statement

For non-negative integers m and n and a prime p, the following congruence relation holds:

where

and

are the base p expansions of m and n respectively. This uses the convention that if m < n.

Proofs

There are several ways to prove Lucas's theorem.

Combinatorial proof

Let M be a set with m elements, and divide it into mi cycles of length pi for the various values of i. Then each of these cycles can be rotated separately, so that a group G which is the Cartesian product of cyclic groups Cpi acts on M. It thus also acts on subsets N of size n. Since the number of elements in G is a power of p, the same is true of any of its orbits. Thus in order to compute modulo p, we only need to consider fixed points of this group action. The fixed points are those subsets N that are a union of some of the cycles. More precisely one can show by induction on k-i, that N must have exactly ni cycles of size pi. Thus the number of choices for N is exactly .

Proof based on generating functions

This proof is due to Nathan Fine. [2]

If p is a prime and n is an integer with 1 ≤ np − 1, then the numerator of the binomial coefficient

is divisible by p but the denominator is not. Hence p divides . In terms of ordinary generating functions, this means that

Continuing by induction, we have for every nonnegative integer i that

Now let m be a nonnegative integer, and let p be a prime. Write m in base p, so that for some nonnegative integer k and integers mi with 0 ≤ mip-1. Then

where in the final product, ni is the ith digit in the base p representation of n. This proves Lucas's theorem.

Consequences

Variations and generalizations

Related Research Articles

<span class="mw-page-title-main">Binomial coefficient</span> Number of subsets of a given size

In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers nk ≥ 0 and is written It is the coefficient of the xk term in the polynomial expansion of the binomial power (1 + x)n; this coefficient can be computed by the multiplicative formula

In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the polynomial (x + y)n into a sum involving terms of the form axbyc, where the exponents b and c are nonnegative integers with b + c = n, and the coefficient a of each term is a specific positive integer depending on n and b. For example, for n = 4,

<span class="mw-page-title-main">Chinese remainder theorem</span> Theorem for solving simultaneous congruences

In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer n by several integers, then one can determine uniquely the remainder of the division of n by the product of these integers, under the condition that the divisors are pairwise coprime.

In mathematics, Pascal's triangle is a triangular array of the binomial coefficients that arises in probability theory, combinatorics, and algebra. In much of the Western world, it is named after the French mathematician Blaise Pascal, although other mathematicians studied it centuries before him in India, Persia, China, Germany, and Italy.

In number theory, Euler's theorem states that, if n and a are coprime positive integers, and is Euler's totient function, then a raised to the power is congruent to 1 modulo n; that is

<span class="mw-page-title-main">Factorization</span> (Mathematical) decomposition into a product

In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is a factorization of the integer 15, and (x – 2)(x + 2) is a factorization of the polynomial x2 – 4.

This article collects together a variety of proofs of Fermat's little theorem, which states that

In algebra and number theory, Wilson's theorem states that a natural number n > 1 is a prime number if and only if the product of all the positive integers less than n is one less than a multiple of n. That is, the factorial satisfies

In mathematics, the falling factorial is defined as the polynomial

In mathematics, Bertrand's postulate states that for each there is a prime such that . It was first proven by Chebyshev, and a short but advanced proof was given by Ramanujan.

In mathematics, the Lucas–Lehmer test (LLT) is a primality test for Mersenne numbers. The test was originally developed by Édouard Lucas in 1876 and subsequently improved by Derrick Henry Lehmer in the 1930s.

The quadratic sieve algorithm (QS) is an integer factorization algorithm and, in practice, the second fastest method known. It is still the fastest for integers under 100 decimal digits or so, and is considerably simpler than the number field sieve. It is a general-purpose factorization algorithm, meaning that its running time depends solely on the size of the integer to be factored, and not on special structure or properties. It was invented by Carl Pomerance in 1981 as an improvement to Schroeppel's linear sieve.

In mathematics, the multinomial theorem describes how to expand a power of a sum in terms of powers of the terms in that sum. It is the generalization of the binomial theorem from binomials to multinomials.

In mathematics, the binomial series is a generalization of the polynomial that comes from a binomial formula expression like for a nonnegative integer . Specifically, the binomial series is the Taylor series for the function centered at , where and . Explicitly,

In mathematics, Wolstenholme's theorem states that for a prime number , the congruence

<span class="mw-page-title-main">Carmichael function</span> Function in mathematical number theory

In number theory, a branch of mathematics, the Carmichael functionλ(n) of a positive integer n is the smallest positive integer m such that

In additive number theory, Fermat's theorem on sums of two squares states that an odd prime p can be expressed as:

In mathematics, especially in combinatorics, Stirling numbers of the first kind arise in the study of permutations. In particular, the Stirling numbers of the first kind count permutations according to their number of cycles.

Coppersmith's attack describes a class of cryptographic attacks on the public-key cryptosystem RSA based on the Coppersmith method. Particular applications of the Coppersmith method for attacking RSA include cases when the public exponent e is small or when partial knowledge of a prime factor of the secret key is available.

In mathematics, Kummer's theorem is a formula for the exponent of the highest power of a prime number p that divides a given binomial coefficient. In other words, it gives the p-adic valuation of a binomial coefficient. The theorem is named after Ernst Kummer, who proved it in a paper,.

References

    • Edouard Lucas (1878). "Théorie des Fonctions Numériques Simplement Périodiques". American Journal of Mathematics . 1 (2): 184–196. doi:10.2307/2369308. JSTOR   2369308. MR   1505161. (part 1);
    • Edouard Lucas (1878). "Théorie des Fonctions Numériques Simplement Périodiques". American Journal of Mathematics . 1 (3): 197–240. doi:10.2307/2369311. JSTOR   2369311. MR   1505164. (part 2);
    • Edouard Lucas (1878). "Théorie des Fonctions Numériques Simplement Périodiques". American Journal of Mathematics . 1 (4): 289–321. doi:10.2307/2369373. JSTOR   2369373. MR   1505176. (part 3)
  1. Fine, Nathan (1947). "Binomial coefficients modulo a prime". American Mathematical Monthly. 54 (10): 589–592. doi:10.2307/2304500. JSTOR   2304500.
  2. Kenneth S. Davis, William A. Webb (1990). "Lucas' Theorem for Prime Powers". European Journal of Combinatorics. 11 (3): 229–233. doi: 10.1016/S0195-6698(13)80122-9 .
  3. Andrew Granville (1997). "Arithmetic Properties of Binomial Coefficients I: Binomial coefficients modulo prime powers" (PDF). Canadian Mathematical Society Conference Proceedings. 20: 253–275. MR   1483922. Archived from the original (PDF) on 2017-02-02.
  4. Désarménien, Jacques (March 1982). "Un Analogue des Congruences de Kummer pour les q-nombres d'Euler". European Journal of Combinatorics. 3 (1): 19–28. doi: 10.1016/S0195-6698(82)80005-X .