Luigi Chierchia

Last updated

Luigi Chierchia (born 1957) is an Italian mathematician, specializing in nonlinear differential equations, mathematical physics, and dynamical systems (celestial mechanics and Hamiltonian systems). [1]

Contents

Chierchia studied physics and mathematics at the Sapienza University of Rome with Laurea degree in 1981 with supervisor Giovanni Gallavotti. [2] After a year of military service, Chierchia studied mathematics at the Courant Institute of New York University and received his PhD there in 1985. [1] His doctoral dissertation Quasi-Periodic Schrödinger Operators in One Dimension, Absolutely Continuous Spectra, Bloch Waves and integrable Hamiltonian Systems was supervised by Henry P. McKean. [3] As a postdoc, Chierchia studied at the University of Arizona, ETH Zurich and the École Polytechnique in Paris. Since 2002 he has been Professor of Mathematical Analysis at Roma Tre University. [1]

With Fabio Pusateri and his doctoral student Gabriella Pinzari, he succeeded in extending the KAM theorem for the three-body problem to the n-body problem. [4] In KAM theory, Chierchia addressed invariant tori in phase-space Hamiltonian systems and stability questions. He has also done research on Arnold diffusion, spectral theory of the quasiperiodic one-dimensional Schrödinger equation, and analogs of KAM theory in infinite-dimensional Hamiltonian systems and partial differential equations (almost periodic nonlinear wave equations).

He was an invited speaker (with Gabriella Pinzari) at the International Congress of Mathematicians in Seoul in 2014, [5] and at the conference Dynamics, Equations and Applications in Kraków in 2019. [6]

Selected publications

Related Research Articles

The Kolmogorov–Arnold–Moser (KAM) theorem is a result in dynamical systems about the persistence of quasiperiodic motions under small perturbations. The theorem partly resolves the small-divisor problem that arises in the perturbation theory of classical mechanics.

<span class="mw-page-title-main">Vladimir Arnold</span> Russian mathematician (1937–2010)

Vladimir Igorevich Arnold was a Soviet and Russian mathematician. He is best known for the Kolmogorov–Arnold–Moser theorem regarding the stability of integrable systems, and contributed to several areas, including geometrical theory of dynamical systems, algebra, catastrophe theory, topology, real algebraic geometry, symplectic geometry, differential equations, classical mechanics, differential-geometric approach to hydrodynamics, geometric analysis and singularity theory, including posing the ADE classification problem.

<span class="mw-page-title-main">Jean Bourgain</span> Belgian mathematician (1954–2018)

Jean Louis, baron Bourgain was a Belgian mathematician. He was awarded the Fields Medal in 1994 in recognition of his work on several core topics of mathematical analysis such as the geometry of Banach spaces, harmonic analysis, ergodic theory and nonlinear partial differential equations from mathematical physics.

<span class="mw-page-title-main">Three-body problem</span> Physics problem related to laws of motion and gravity

In physics, specifically classical mechanics, the three-body problem is to take the initial positions and velocities of three point masses that orbit each other in space and calculate their subsequent trajectories using Newton's laws of motion and Newton's law of universal gravitation.

<span class="mw-page-title-main">John N. Mather</span> American mathematician

John Norman Mather was a mathematician at Princeton University known for his work on singularity theory and Hamiltonian dynamics. He was descended from Atherton Mather (1663–1734), a cousin of Cotton Mather. His early work dealt with the stability of smooth mappings between smooth manifolds of dimensions n and p. He determined the precise dimensions (n,p) for which smooth mappings are stable with respect to smooth equivalence by diffeomorphisms of the source and target.

In mathematics, integrability is a property of certain dynamical systems. While there are several distinct formal definitions, informally speaking, an integrable system is a dynamical system with sufficiently many conserved quantities, or first integrals, that its motion is confined to a submanifold of much smaller dimensionality than that of its phase space.

In mathematics, Floer homology is a tool for studying symplectic geometry and low-dimensional topology. Floer homology is a novel invariant that arises as an infinite-dimensional analogue of finite-dimensional Morse homology. Andreas Floer introduced the first version of Floer homology, now called symplectic Floer homology, in his proof of the Arnold conjecture in symplectic geometry. Floer also developed a closely related theory for Lagrangian submanifolds of a symplectic manifold. A third construction, also due to Floer, associates homology groups to closed three-dimensional manifolds using the Yang–Mills functional. These constructions and their descendants play a fundamental role in current investigations into the topology of symplectic and contact manifolds as well as (smooth) three- and four-dimensional manifolds.

<span class="mw-page-title-main">Camassa–Holm equation</span> Equation in fluid dynamics

In fluid dynamics, the Camassa–Holm equation is the integrable, dimensionless and non-linear partial differential equation

Nikolai Nikolaevich Nekhoroshev was a prominent Soviet Russian mathematician specializing in classical mechanics and dynamical systems. His research concerned Hamiltonian mechanics, perturbation theory, celestial mechanics, integrable systems, dynamical systems, the quasiclassical approximation, and singularity theory. He proved, in particular, a stability result in KAM-theory stating that, under certain conditions, solutions of nearly integrable systems stay close to invariant tori for exponentially long times.

In applied mathematics, Arnold diffusion is the phenomenon of instability of nearly-integrable Hamiltonian systems. The phenomenon is named after Vladimir Arnold who was the first to publish a result in the field in 1964. More precisely, Arnold diffusion refers to results asserting the existence of solutions to nearly-integrable Hamiltonian systems that exhibit a significant change in the action variables.

In physics, the n-body problem is the problem of predicting the individual motions of a group of celestial objects interacting with each other gravitationally. Solving this problem has been motivated by the desire to understand the motions of the Sun, Moon, planets, and visible stars. In the 20th century, understanding the dynamics of globular cluster star systems became an important n-body problem. The n-body problem in general relativity is considerably more difficult to solve due to additional factors like time and space distortions.

<span class="mw-page-title-main">Alessio Figalli</span> Italian mathematician (born 1984)

Alessio Figalli is an Italian mathematician working primarily on calculus of variations and partial differential equations.

<span class="mw-page-title-main">Alexander Varchenko</span>

Alexander Nikolaevich Varchenko is a Soviet and Russian mathematician working in geometry, topology, combinatorics and mathematical physics.

<span class="mw-page-title-main">Håkan Eliasson</span> Swedish mathematician

Lars Håkan Eliasson is a Swedish mathematician.

In physics, non-Hermitian quantum mechanics describes quantum mechanical systems where Hamiltonians are not Hermitian.

Gabriella Pinzari is an Italian mathematician known for her research on the n-body problem.

<span class="mw-page-title-main">Sergei B. Kuksin</span>

Sergei Borisovich Kuksin is a French and Russian mathematician, specializing in partial differential equations (PDEs).

Zhihong "Jeff" Xia is a Chinese-American mathematician.

Antonio Giorgilli is an Italian mathematical physicist, known for his work on the perturbative theory of Hamiltonian systems with applications to studies of orbital stability for major and minor planets.

<span class="mw-page-title-main">Sergey Bolotin</span> Russian mathematician (born 1954)

Sergey Vladimirovich Bolotin is a Russian mathematician, specializing in dynamical systems of classical mechanics.

References

  1. 1 2 3 "Luigi Chierchia, Professor of mathematical analysis (with CV, preprints, etc.)". Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre.
  2. Chierchia, L. (2009). "Meeting Jürgen Moser" (PDF). Regular and Chaotic Dynamics. 14 (1): 5–6. Bibcode:2009RCD....14....5C. doi:10.1134/S156035470901002X. S2CID   121007793.
  3. Luigi Chierchia at the Mathematics Genealogy Project
  4. Dumas, H. Scott (2014). The KAM story. World Scientific. p. 154. ISBN   9789814556606.
  5. Chierchia, Luigi; Pinzari, Gabriella (2014). "Metric stability of the planetary N–body problem" (PDF). Proceedings of the International Congress of Mathematicians. Vol. 3. pp. 547–570.
  6. "DEA 2019 Invited Speakers" . Retrieved 2023-03-15.