Lute of Pythagoras

Last updated
Lute of Pythagoras Lute of Pythagoras.svg
Lute of Pythagoras

The lute of Pythagoras is a self-similar geometric figure made from a sequence of pentagrams.

Contents

Constructions

The lute may be drawn from a sequence of pentagrams. The centers of the pentagrams lie on a line and (except for the first and largest of them) each shares two vertices with the next larger one in the sequence. [1] [2]

An alternative construction is based on the golden triangle, an isosceles triangle with base angles of 72° and apex angle 36°. Two smaller copies of the same triangle may be drawn inside the given triangle, having the base of the triangle as one of their sides. The two new edges of these two smaller triangles, together with the base of the original golden triangle, form three of the five edges of the polygon. Adding a segment between the endpoints of these two new edges cuts off a smaller golden triangle, within which the construction can be repeated. [3] [4]

Some sources add another pentagram, inscribed within the inner pentagon of the largest pentagram of the figure. The other pentagons of the figure do not have inscribed pentagrams. [3] [4] [5]

Properties

The convex hull of the lute is a kite shape with three 108° angles and one 36° angle. [2] The sizes of any two consecutive pentagrams in the sequence are in the golden ratio to each other, and many other instances of the golden ratio appear within the lute. [1] [2] [3] [4] [5]

History

The lute is named after the ancient Greek mathematician Pythagoras, but its origins are unclear. [3] An early reference to it is in a 1990 book on the golden ratio by Boles and Newman. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Golden ratio</span> Number, approximately 1.618

In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. Expressed algebraically, for quantities and with , is in a golden ratio to if

<span class="mw-page-title-main">Regular icosahedron</span> Convex polyhedron with 20 triangular faces

In geometry, the regular icosahedron is a convex polyhedron that can be constructed from pentagonal antiprism by attaching two pentagonal pyramids with regular faces to each of its pentagonal faces, or by putting points onto the cube. The resulting polyhedron has 20 equilateral triangles as its faces, 30 edges, and 12 vertices. It is an example of a Platonic solid and of a deltahedron. The icosahedral graph represents the skeleton of a regular icosahedron.

<span class="mw-page-title-main">Icosidodecahedron</span> Archimedean solid with 32 faces

In geometry, an icosidodecahedron or pentagonal gyrobirotunda is a polyhedron with twenty (icosi) triangular faces and twelve (dodeca) pentagonal faces. An icosidodecahedron has 30 identical vertices, with two triangles and two pentagons meeting at each, and 60 identical edges, each separating a triangle from a pentagon. As such, it is one of the Archimedean solids and more particularly, a quasiregular polyhedron.

In geometry, a polygon is a plane figure made up of line segments connected to form a closed polygonal chain.

<span class="mw-page-title-main">Kite (geometry)</span> Quadrilateral symmetric across a diagonal

In Euclidean geometry, a kite is a quadrilateral with reflection symmetry across a diagonal. Because of this symmetry, a kite has two equal angles and two pairs of adjacent equal-length sides. Kites are also known as deltoids, but the word deltoid may also refer to a deltoid curve, an unrelated geometric object sometimes studied in connection with quadrilaterals. A kite may also be called a dart, particularly if it is not convex.

<span class="mw-page-title-main">Pentagram</span> Five-pointed star polygon

A pentagram is a regular five-pointed star polygon, formed from the diagonal line segments of a convex regular pentagon. Drawing a circle around the five points creates a similar symbol referred to as the pentacle, which is used widely by Wiccans and in paganism, or as a sign of life and connections. The word "pentagram" refers only to the five-pointed star, not the surrounding circle of a pentacle.

<span class="mw-page-title-main">Truncated icosidodecahedron</span> Archimedean solid

In geometry, a truncated icosidodecahedron, rhombitruncated icosidodecahedron, great rhombicosidodecahedron, omnitruncated dodecahedron or omnitruncated icosahedron is an Archimedean solid, one of thirteen convex, isogonal, non-prismatic solids constructed by two or more types of regular polygon faces.

<span class="mw-page-title-main">Star polygon</span> Regular non-convex polygon

In geometry, a star polygon is a type of non-convex polygon. Regular star polygons have been studied in depth; while star polygons in general appear not to have been formally defined, certain notable ones can arise through truncation operations on regular simple or star polygons.

<span class="mw-page-title-main">Decagon</span> Shape with ten sides

In geometry, a decagon is a ten-sided polygon or 10-gon. The total sum of the interior angles of a simple decagon is 1440°.

<span class="mw-page-title-main">120-cell</span> Four-dimensional analog of the dodecahedron

In geometry, the 120-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {5,3,3}. It is also called a C120, dodecaplex (short for "dodecahedral complex"), hyperdodecahedron, polydodecahedron, hecatonicosachoron, dodecacontachoron and hecatonicosahedroid.

<i>Donald in Mathmagic Land</i> 1959 Donald Duck cartoon

Donald in Mathmagic Land is an American live-action animated featurette produced by Walt Disney Productions and featuring Donald Duck. The short was directed by Hamilton Luske and was released on June 26, 1959. It was nominated for an Academy Award for Best Documentary at the 32nd Academy Awards, and became a widely viewed educational film in American schools of the 1960s and beyond.

<span class="mw-page-title-main">Special right triangle</span> Right triangle with a feature making calculations on the triangle easier

A special right triangle is a right triangle with some regular feature that makes calculations on the triangle easier, or for which simple formulas exist. For example, a right triangle may have angles that form simple relationships, such as 45°–45°–90°. This is called an "angle-based" right triangle. A "side-based" right triangle is one in which the lengths of the sides form ratios of whole numbers, such as 3 : 4 : 5, or of other special numbers such as the golden ratio. Knowing the relationships of the angles or ratios of sides of these special right triangles allows one to quickly calculate various lengths in geometric problems without resorting to more advanced methods.

<span class="mw-page-title-main">Great icosidodecahedron</span> Polyhedron with 32 faces

In geometry, the great icosidodecahedron is a nonconvex uniform polyhedron, indexed as U54. It has 32 faces (20 triangles and 12 pentagrams), 60 edges, and 30 vertices. It is given a Schläfli symbol r{3,52}. It is the rectification of the great stellated dodecahedron and the great icosahedron. It was discovered independently by Hess (1878), Badoureau (1881) and Pitsch (1882).

<span class="mw-page-title-main">Golden triangle (mathematics)</span> Isosceles triangle in which the duplicated side is in the golden ratio to the base side

A golden triangle, also called a sublime triangle, is an isosceles triangle in which the duplicated side is in the golden ratio to the base side:

<span class="mw-page-title-main">Regular dodecahedron</span> Convex polyhedron with 12 regular pentagonal faces

A regular dodecahedron or pentagonal dodecahedron is a dodecahedron composed of regular pentagonal faces, three meeting at each vertex. It is an example of Platonic solids, described as cosmic stellation by Plato in his dialogues, and it was used as part of Solar System proposed by Johannes Kepler. However, the regular dodecahedron, including the other Platonic solids, has already been described by other philosophers since antiquity.

<span class="mw-page-title-main">Kepler triangle</span> Right triangle related to the golden ratio

A Kepler triangle is a special right triangle with edge lengths in geometric progression. The ratio of the progression is where is the golden ratio, and the progression can be written: , or approximately . Squares on the edges of this triangle have areas in another geometric progression, . Alternative definitions of the same triangle characterize it in terms of the three Pythagorean means of two numbers, or via the inradius of isosceles triangles.

<span class="mw-page-title-main">Pentagon</span> Shape with five sides

In geometry, a pentagon is any five-sided polygon or 5-gon. The sum of the internal angles in a simple pentagon is 540°.

<span class="mw-page-title-main">Pythagorean theorem</span> Relation between sides of a right triangle

In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse is equal to the sum of the areas of the squares on the other two sides.

<span class="mw-page-title-main">Penrose tiling</span> Non-periodic tiling of the plane

A Penrose tiling is an example of an aperiodic tiling. Here, a tiling is a covering of the plane by non-overlapping polygons or other shapes, and a tiling is aperiodic if it does not contain arbitrarily large periodic regions or patches. However, despite their lack of translational symmetry, Penrose tilings may have both reflection symmetry and fivefold rotational symmetry. Penrose tilings are named after mathematician and physicist Roger Penrose, who investigated them in the 1970s.

<span class="mw-page-title-main">Pythagorean tiling</span> Tiling by squares of two sizes

A Pythagorean tiling or two squares tessellation is a tiling of a Euclidean plane by squares of two different sizes, in which each square touches four squares of the other size on its four sides. Many proofs of the Pythagorean theorem are based on it, explaining its name. It is commonly used as a pattern for floor tiles. When used for this, it is also known as a hopscotch pattern or pinwheel pattern, but it should not be confused with the mathematical pinwheel tiling, an unrelated pattern.

References

  1. 1 2 Gullberg, Jan (1997), Mathematics: From the Birth of Numbers, W. W. Norton & Company, p. 420, ISBN   9780393040029 .
  2. 1 2 3 Darling, David (2004), The Universal Book of Mathematics: From Abracadabra to Zeno's Paradoxes, John Wiley & Sons, p. 260, ISBN   9780471667001 .
  3. 1 2 3 4 Lamb, Evelyn (May 29, 2013), "Strumming the Lute of Pythagoras", Scientific American .
  4. 1 2 3 Ellison, Elaine Krajenke (2008), "Create a Mathematical Banner Using the Lute, the Sacred Cut, and the Spidron", Bridges Leeuwarden: Mathematics, Music, Art, Architecture, Culture, pp. 467–468, ISBN   9780966520194 .
  5. 1 2 Pickover, Clifford A. (2011), A Passion for Mathematics: Numbers, Puzzles, Madness, Religion, and the Quest for Reality, John Wiley & Sons, pp. 331–332, ISBN   9781118046074 .
  6. Boles, Martha; Newman, Rochelle (1990), The Golden Relationship: Universal patterns, Pythagorean Press, pp. 86–87, ISBN   9780961450434 .