MAFA

Last updated

MAFA (Mast cell function-associated antigen) is a type II membrane glycoprotein, first identified on the surface of rat mucosal-type mast cells of the RBL-2H3 line. More recently, human and mouse homologues of MAFA have been discovered yet also (or only) expressed by NK and T-cells. [1] MAFA is closely linked with the type 1 Fcɛ receptors in not only mucosal mast cells of humans and mice but also in the serosal mast cells of these same organisms. [2]

Contents

It has the ability to function as both a channel for calcium ions along with interact with other receptors to inhibit certain cell processes. It function is based on its specialized structure, which contains many specialized motifs and sequences that allow its functions to take place. [3]

Discovery

Experimental discovery

MAFA was initially discovered by Enrique Ortega and Israel Pecht in 1988 while studying the type 1 Fcɛ receptors (FcɛRI) and the unknown Ca2+ channels that allowed these receptors to work in the cellular membrane. Ortega and Pecht experimented through using a series of monoclonal antibodies on the RBL -2H3 line of rat mast cells. While experimenting and trying to find a specific antibody that would raise a response, the G63 monoclonal antibody was shown to raise a response by inhibiting the cellular secretions linked to the FcɛRI receptors in these rat mucosal mast cells. The G63 antibody attached to a specific membrane receptor protein that caused the inhibition process to occur. Specifically, the inhibition occurred by the G63 antibody and glycoprotein cross-linking so that the processes of inflammation mediator formation, Ca2+ intake into the cell, and the hydrolysis of phosphatidylinositides were all stopped. This caused biochemical inhibition of the normal FcɛRI response. The identified receptor protein was then isolated and studied where it was found that when cross-linked, the protein actually had a conformational change that localized the FcɛRI receptors. Based on these results, both Ortega and Pecht named this newly discovered protein Mast cell function-associated antigen or MAFA for short. [2]

Structure and coding

Protein structure

General structure

MAFA is said to be a type II membrane glycoprotein, which means that its N-terminus will face the cytosol while its C-terminus will face the extracellular environment. The protein is 188 amino acids in length and has both hydrophobic and hydrophilic regions within these amino acids. The MAFA protein weighs between 28-40 kiloDaltons and can exist as both a monomer or a homodimer in various species as seen by the SDS-PAGE results that show two broad bands based on these two forms. [2] The MAFA core polypeptide sequence weights about 19 kiloDaltons, however, a large amount of the weight comes from the N-linked oligosaccharides that are attached onto the protein. This heavy glycosylation is a common occurrence among type II membrane glycoproteins and is a key part of both their structure and function. The variation among glycosylation levels helps play an important role in the properties of MAFA proteins, so the protein must be properly made and modified in order to have full functionality. [4]

CRD region

The C-terminus of MAFA contains 114 amino acids and has a distinct region called the carbohydrate recognition domain, or CRD for short. This region, as implied in the name, is where various carbohydrates and signaling molecules are recognized and attach to the protein. This CRD is present in many other glycoproteins present in higher level eukaryotes. The CRD is distinguished by a conserved 15 amino acid sequence that includes the following number of amino acids: two glycine residues, two leucine residues, five tryptophan residues, and six cysteine residues. These residues help to form various motifs through their interactions including both WIGL and CYYF motifs. [4]

Intracellular domain

Along with specialized sequences on both the N terminus and C terminus, the intracellular domain of this protein contains a specialized sequence called the SIYSTL sequence, where the name is the one letter amino acid abbreviations of its residues. [5] All of the amino acids in this sequence are polar in nature and are considered to be a part of the Immunoreceptor Tyrosine-based Inhibitory Motif (ITM). This ITIM allows the MAFA receptor protein to not only be considered a type II glycoprotein, but is also classified as an inhibitory receptor. [5]

Genetic coding

Transcriptional and translational coding

As with other proteins, the MAFA undergoes both transcription followed by translation and post-translational modifications in the ER and Golgi. The genomic coding region of this protein consists of 13 kilobytes of genetic information with five exons that are split by four introns in the gene. Of these five exons, three are used to help code the CRD region that was previously mentioned. This gene is also regulated through an upstream promoter region that is 664 basepairs up from the first nucleotide of the protein. Like other proteins, the gene is copied in multiple starting points and put together into an mRNA transcript. [6]

Alternative splicing

After the code was transcribed into mRNA, the MAFA strand was also found to undergo alternative splicing which has allowed various forms of the MAFA protein to be translated and lead to many of the variations previously discussed. One form of this code deletes the transmembrane portion of the MAFA protein and causes a soluble version to be made, being unique to this protein and has allowed scientists to apply this alternative splicing idea to other Mast cell transmembrane proteins as well. [4] Once translated, the protein enters the proper cellular pathways from the ER to the Golgi and eventually the cellular membrane, where it is integrated and begins its functionality.

Function

Channel functionality

As discovered by Ortega and Pecht, one of the main functions of MAFA is to function as a Ca2+ channel as seen in their experiment with inhibition of Ca2+ when the G63 antibody was bound to the MAFA receptor region. Additionally, as seen by the fact that it is a type II membrane glycoprotein and by its ability to change conformation to allow varying amount of calcium to enter the cell, MAFA also functions as a receptor molecule and can be inhibit various processes in the mast cells. Specifically, this inhibition is in part due to the SIYSTL motif at the C-terminus of the protein, which is in the extracellular matrix. This motif is dense with Tyrosine residues, some of which are phosphorylated. The phosphorylation on these residues play the primary role in allowing MAFA to inhibit different biochemical processes. [4]

Clustering

FcɛRI

MAFA protein also interact greatly with FcɛRI receptors through the formation of aggregates and lipid rafts within the cellular membrane. By forming these aggregate structures, the conformation of MAFA is changed so that it can fully interact with the FcɛRI receptors and therefore cannot bind with the G63 monoclonal antibodies and is inhibited from allowing diffusion across its membrane. Along with inhibition of MAFA function, the FcɛRI receptor is also inhibited, meaning that even if a stimulus was bound to its receptor, the FcɛRI would not cause the hydrolysis of phosphatidylinositides as it normally does. [3] Therefore, by forming these large clusters, both the function of MAFA and FcɛRI receptors are inhibited and can lead to further inhibitions of cell signaling processes within the cell. Even when the MAFA is not induced to interact heavily with FcɛRI, the mast cell membrane has natural interactions between these two receptors that cause small amounts of MAFA-FcɛRI complexes to be found without large changes to either of their functions. [6] The specific mechanism by which the MAFA and FcɛRI interact and aggregate is still yet to be discovered. [4]

Cell cycle

Along with interacting with other proteins, MAFA can form aggregates consisting only of itself, which are induced by either the monoclonal antibody G63, which was involved in its discovery, or by parts of the F(ab')2 antibody binding to its extracellular complex. By forming these MAFA groups, it was found to cause inhibition of cell cycle processes and prevent mitosis or DNA Replication from occurring. [5] Specifically, this formation causes an increase in the tyrosine phosphorylation of various cyclins and proteins involved in the cell cycle. The main two proteins that are phosphorylated are p62DOK and inositol phosphatase SHIP and this causes further change of downstream processes that these proteins are involved in. For p62DOK, the phosphorylation process causes it to have increased binding to RasGAP, which functions to inhibit the Ras protein function by taking causing GTPase activity to take place and GDP to be bound, which inhibits Ras functionality. By having inhibition of Ras, further downstream promotion of DNA transcription is also halted, which includes some cell cycle proteins. [5] For inositol phosphatase SHIP, the phosphorylation caused an increased amount of binding to Shc, which is normally found to be bound to Sos1 during cell cycling. Sos1 and SHIP both bind to Shc competitively and by having an increased affinity for Shc during phosphorylation, Sos1 binding decreases greatly. This relationship suggests that decreased Sos1 binding is also associated with halting the cell cycle, although the mechanism by which this inhibition occurs has not been discovered. [5]

Alternative forms

MAFA can also exist in multiple forms due to alternative splicing and one of these forms in a soluble version of the protein where its transmembrane portion was not translated and modified. This form of MAFA can diffuse out of the cellular membrane and into the extracellular matrix without being degraded or broken down by lysosomes, meaning that it does serve a function within human cells. The degree of glycosylation along with the specific function of these proteins is still yet to be discovered, but it is hypothesized that they play an important role in helping maintain calcium levels along with limiting the formation of inflammation mediators within these mast cells. [1] Much about these alternative forms is yet to be discovered.

Related Research Articles

<span class="mw-page-title-main">Tyrosine kinase</span> Class of enzymes that phosphorylate protein tyrosine residues

A tyrosine kinase is an enzyme that can transfer a phosphate group from ATP to the tyrosine residues of specific proteins inside a cell. It functions as an "on" or "off" switch in many cellular functions.

<span class="mw-page-title-main">Glycoprotein</span> Protein with oligosaccharide modifications

Glycoproteins are proteins which contain oligosaccharide chains covalently attached to amino acid side-chains. The carbohydrate is attached to the protein in a cotranslational or posttranslational modification. This process is known as glycosylation. Secreted extracellular proteins are often glycosylated.

<span class="mw-page-title-main">Index of biochemistry articles</span>

Biochemistry is the study of the chemical processes in living organisms. It deals with the structure and function of cellular components such as proteins, carbohydrates, lipids, nucleic acids and other biomolecules.

<span class="mw-page-title-main">Chemokine</span> Small cytokines or signaling proteins secreted by cells

Chemokines, or chemotactic cytokines, are a family of small cytokines or signaling proteins secreted by cells that induce directional movement of leukocytes, as well as other cell types, including endothelial and epithelial cells. In addition to playing a major role in the activation of host immune responses, chemokines are important for biological processes, including morphogenesis and wound healing, as well as in the pathogenesis of diseases like cancers.

In cell biology, Protein kinase C, commonly abbreviated to PKC (EC 2.7.11.13), is a family of protein kinase enzymes that are involved in controlling the function of other proteins through the phosphorylation of hydroxyl groups of serine and threonine amino acid residues on these proteins, or a member of this family. PKC enzymes in turn are activated by signals such as increases in the concentration of diacylglycerol (DAG) or calcium ions (Ca2+). Hence PKC enzymes play important roles in several signal transduction cascades.

<span class="mw-page-title-main">T-cell receptor</span> Protein complex on the surface of T cells that recognises antigens

The T-cell receptor (TCR) is a protein complex found on the surface of T cells, or T lymphocytes, that is responsible for recognizing fragments of antigen as peptides bound to major histocompatibility complex (MHC) molecules. The binding between TCR and antigen peptides is of relatively low affinity and is degenerate: that is, many TCRs recognize the same antigen peptide and many antigen peptides are recognized by the same TCR.

<span class="mw-page-title-main">Fc receptor</span> Surface protein important to the immune system

In immunology, a Fc receptor is a protein found on the surface of certain cells – including, among others, B lymphocytes, follicular dendritic cells, natural killer cells, macrophages, neutrophils, eosinophils, basophils, human platelets, and mast cells – that contribute to the protective functions of the immune system. Its name is derived from its binding specificity for a part of an antibody known as the Fc region. Fc receptors bind to antibodies that are attached to infected cells or invading pathogens. Their activity stimulates phagocytic or cytotoxic cells to destroy microbes, or infected cells by antibody-mediated phagocytosis or antibody-dependent cell-mediated cytotoxicity. Some viruses such as flaviviruses use Fc receptors to help them infect cells, by a mechanism known as antibody-dependent enhancement of infection.

<span class="mw-page-title-main">Gp41</span> Subunit of the envelope protein complex of retroviruses

Gp41 also known as glycoprotein 41 is a subunit of the envelope protein complex of retroviruses, including human immunodeficiency virus (HIV). Gp41 is a transmembrane protein that contains several sites within its ectodomain that are required for infection of host cells. As a result of its importance in host cell infection, it has also received much attention as a potential target for HIV vaccines.

<span class="mw-page-title-main">Anthrax toxin</span> Tripartite protein complex secreted by virulent strains of Bacillus anthracis

Anthrax toxin is a three-protein exotoxin secreted by virulent strains of the bacterium, Bacillus anthracis—the causative agent of anthrax. The toxin was first discovered by Harry Smith in 1954. Anthrax toxin is composed of a cell-binding protein, known as protective antigen (PA), and two enzyme components, called edema factor (EF) and lethal factor (LF). These three protein components act together to impart their physiological effects. Assembled complexes containing the toxin components are endocytosed. In the endosome, the enzymatic components of the toxin translocate into the cytoplasm of a target cell. Once in the cytosol, the enzymatic components of the toxin disrupts various immune cell functions, namely cellular signaling and cell migration. The toxin may even induce cell lysis, as is observed for macrophage cells. Anthrax toxin allows the bacteria to evade the immune system, proliferate, and ultimately kill the host animal. Research on anthrax toxin also provides insight into the generation of macromolecular assemblies, and on protein translocation, pore formation, endocytosis, and other biochemical processes.

Siglecs(Sialic acid-binding immunoglobulin-type lectins) are cell surface proteins that bind sialic acid. They are found primarily on the surface of immune cells and are a subset of the I-type lectins. There are 14 different mammalian Siglecs, providing an array of different functions based on cell surface receptor-ligand interactions.

<span class="mw-page-title-main">CD22</span> Lectin molecule

CD22, or cluster of differentiation-22, is a molecule belonging to the SIGLEC family of lectins. It is found on the surface of mature B cells and to a lesser extent on some immature B cells. Generally speaking, CD22 is a regulatory molecule that prevents the overactivation of the immune system and the development of autoimmune diseases.

An immunoreceptor tyrosine-based inhibitory motif (ITIM), is a conserved sequence of amino acids that is found intracellularly in the cytoplasmic domains of many inhibitory receptors of the non-catalytic tyrosine-phosphorylated receptor family found on immune cells. These immune cells include T cells, B cells, NK cells, dendritic cells, macrophages and mast cells. ITIMs have similar structures of S/I/V/LxYxxI/V/L, where x is any amino acid, Y is a tyrosine residue that can be phosphorylated, S is the amino acide Serine, I is the amino acid Isoleucine, and V is the amino acid Valine. ITIMs recruit SH2 domain-containing phosphatases, which inhibit cellular activation. ITIM-containing receptors often serve to target Immunoreceptor tyrosine-based activation motif(ITAM)-containing receptors, resulting in an innate inhibition mechanism within cells. ITIM bearing receptors have important role in regulation of immune system allowing negative regulation at different levels of the immune response.

The mannose receptor is a C-type lectin primarily present on the surface of macrophages, immature dendritic cells and liver sinusoidal endothelial cells, but is also expressed on the surface of skin cells such as human dermal fibroblasts and keratinocytes. It is the first member of a family of endocytic receptors that includes Endo180 (CD280), M-type PLA2R, and DEC-205 (CD205).

<span class="mw-page-title-main">Signal-regulatory protein alpha</span>

Signal regulatory protein α (SIRPα) is a regulatory membrane glycoprotein from SIRP family expressed mainly by myeloid cells and also by stem cells or neurons.

A nuclear export signal (NES) is a short target peptide containing 4 hydrophobic residues in a protein that targets it for export from the cell nucleus to the cytoplasm through the nuclear pore complex using nuclear transport. It has the opposite effect of a nuclear localization signal, which targets a protein located in the cytoplasm for import to the nucleus. The NES is recognized and bound by exportins.

<span class="mw-page-title-main">Viral neuraminidase</span>

Viral neuraminidase is a type of neuraminidase found on the surface of influenza viruses that enables the virus to be released from the host cell. Neuraminidases are enzymes that cleave sialic acid groups from glycoproteins. Neuraminidase inhibitors are antiviral agents that inhibit influenza viral neuraminidase activity and are of major importance in the control of influenza.

Epstein–Barr virus (EBV) latent membrane protein 2 (LMP2) are two viral proteins of the Epstein–Barr virus. LMP2A/LMP2B are transmembrane proteins that act to block tyrosine kinase signaling. LMP2A is a transmembrane protein that inhibits normal B-cell signal transduction by mimicking an activated B-cell receptor (BCR). The N-terminus domain of LMP2A is tyrosine phosphorylated and associates with Src family protein tyrosine kinases (PTKs) as well as spleen tyrosine kinase (Syk). PTKs and Syk are associated with BCR signal transduction.

<span class="mw-page-title-main">Interferon gamma receptor (IFNGR1) family</span>

In molecular biology, the interferon gamma receptor (IFNGR1) family is a family of proteins which includes several eukaryotic and viral interferon gamma receptor proteins.

Non-catalytic tyrosine-phosphorylated receptors (NTRs), also called immunoreceptors or Src-family kinase-dependent receptors, are a group of cell surface receptors expressed by leukocytes that are important for cell migration and the recognition of abnormal cells or structures and the initiation of an immune response. These transmembrane receptors are not grouped into the NTR family based on sequence homology, but because they share a conserved signalling pathway utilizing the same signalling motifs. A signaling cascade is initiated when the receptors bind their respective ligand resulting in cell activation. For that tyrosine residues in the cytoplasmic tail of the receptors have to be phosphorylated, hence the receptors are referred to as tyrosine-phosphorylated receptors. They are called non-catalytic receptors, as the receptors have no intrinsic tyrosine kinase activity and cannot phosphorylate their own tyrosine residues. Phosphorylation is mediated by additionally recruited kinases. A prominent member of this receptor family is the T-cell receptor.

<span class="mw-page-title-main">SIGLEC6</span> Protein-coding gene in the species Homo sapiens

Sialic acid-binding Ig-like lectin 6 is a protein that in humans is encoded by the SIGLEC6 gene. The gene was originally named CD33L (CD33-like) due to similarities between these genes but later became known as OB-BP1 due to its ability to bind to this factor and, finally, SIGLEC6 as the sixth member of the SIGLEC family of receptors to be identified. The protein has also been given the CD designation CD327.

References

  1. 1 2 Abramson; Jakub Abramson; Rong Xu; Israel Pecht (September 2002). "An unusual inhibitory receptor—the mast cell function-associated antigen (MAFA)". Molecular Immunology. 38 (16–18): 1307–1313. doi:10.1016/S0161-5890(02)00080-9. PMID   12217400.
  2. 1 2 3 Ortega E, Schneider H, Pecht I. Possible interactions between the Fc epsilon receptor and a novel mast cell function-associated antigen. Int Immunol. 1991 Apr;3(4):333-42. doi: 10.1093/intimm/3.4.333. PMID: 1831652.
  3. 1 2 Bocek P Jr, Guthmann MD, Pecht I. Analysis of the genes encoding the mast cell function-associated antigen and its alternatively spliced transcripts. J Immunol. 1997 Apr 1;158(7):3235-43. PMID: 9120279.
  4. 1 2 3 4 5 Xu R, Pecht I. The mast cell function-associated antigen, a new member of the ITIM family. Curr Top Microbiol Immunol. 1999;244:159-68. doi: 10.1007/978-3-642-58537-1_14. PMID: 10453658.
  5. 1 2 3 4 5 Abramson J, Pecht I. Clustering the mast cell function-associated antigen (MAFA) leads to tyrosine phosphorylation of p62Dok and SHIP and affects RBL-2H3 cell cycle. Immunol Lett. 2002 Jun 3;82(1-2):23-8. doi: 10.1016/s0165-2478(02)00013-5. PMID: 12008030.
  6. 1 2 Song, Jinming; Hagen, Guy; Smith, Steven M. L.; Roess, Deborah A.; Pecht, Israel; Barisas, B. George (2002). "Interactions of the mast cell function-associated antigen with the type I Fcepsilon receptor". Molecular Immunology. 38 (16–18): 1315–1321. doi:10.1016/s0161-5890(02)00081-0. ISSN   0161-5890. PMID   12217401.