MAYA-II

Last updated

MAYA-II (Molecular Array of YES and ANDNOT logic gates [1] ) is a DNA computer, based on DNA Stem Loop Controllers, developed by scientists at Columbia University and the University of New Mexico and created in 2006. [2]

Replacing the normally silicon-based circuits, this chip has DNA strands to form the circuit. It is said that the speed of such DNA-circuited computer chips will rival and surpass the silicon-based ones, [3] they will be of use in blood samples and in the body and might partake in single cell signaling.[ citation needed ]

It is the successor to the MAYA I which was composed of only 23 logic gates and could only complete specific games of tic-tac-toe. MAYA-II has more than 100 DNA circuits and can now thoroughly play a game of tic-tac-toe. It is very slow - one move in a game of tic-tac-toe can take up to 30 minutes making it more of a demonstration than an actual application. [4]

The arrangement of this device looks like that of a tic-tac-toe grid and consists of nine wells coated with culture cells. The logic gates are made of the E6 Deoxyribozymes (or DNAzyme) which react to specific oligonucleotide input. Upon reaction, the DNAzyme cleaves the substrate producing an increase in red or green fluorescence, depending on whether it is the computer's or the human's turn respectively.

This technology was used to deepen the quality of diagnostics given to patients infected with the West Nile virus. Joanne Macdonald, a Columbia University virologist, hopes this device can be implanted in the human body and control the presence of cancer cells or the levels of insulin for diabetic patients. [5]

One of the suggested uses put forward by MAYA's creators is that technology such as this can be used in situations where fluid is involved, such as in a sample of blood or a body, since it does not use traditional silicon components. [6]

Related Research Articles

Processor design is a subfield of computer engineering and electronics engineering (fabrication) that deals with creating a processor, a key component of computer hardware.

<span class="mw-page-title-main">Field-programmable gate array</span> Array of logic gates that are reprogrammable

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by a customer or a designer after manufacturing – hence the term field-programmable. The FPGA configuration is generally specified using a hardware description language (HDL), similar to that used for an application-specific integrated circuit (ASIC). Circuit diagrams were previously used to specify the configuration, but this is increasingly rare due to the advent of electronic design automation tools.

<span class="mw-page-title-main">Integrated circuit</span> Electronic circuit formed on a small, flat piece of semiconductor material

An integrated circuit or monolithic integrated circuit is a set of electronic circuits on one small flat piece of semiconductor material, usually silicon. Large numbers of tiny MOSFETs integrate into a small chip. This results in circuits that are orders of magnitude smaller, faster, and less expensive than those constructed of discrete electronic components. The IC's mass production capability, reliability, and building-block approach to integrated circuit design has ensured the rapid adoption of standardized ICs in place of designs using discrete transistors. ICs are now used in virtually all electronic equipment and have revolutionized the world of electronics. Computers, mobile phones and other home appliances are now inextricable parts of the structure of modern societies, made possible by the small size and low cost of ICs such as modern computer processors and microcontrollers.

A logic gate is an idealized or physical device implementing a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output. Depending on the context, the term may refer to an ideal logic gate, one that has for instance zero rise time and unlimited fan-out, or it may refer to a non-ideal physical device.

<span class="mw-page-title-main">Nanotechnology</span> Field of applied science addressing the control of matter on atomic and (supra)molecular scales

Nanotechnology, also shortened to nanotech, is the use of matter on an atomic, molecular, and supramolecular scale for industrial purposes. The earliest, widespread description of nanotechnology referred to the particular technological goal of precisely manipulating atoms and molecules for fabrication of macroscale products, also now referred to as molecular nanotechnology. A more generalized description of nanotechnology was subsequently established by the National Nanotechnology Initiative, which defined nanotechnology as the manipulation of matter with at least one dimension sized from 1 to 100 nanometers. This definition reflects the fact that quantum mechanical effects are important at this quantum-realm scale, and so the definition shifted from a particular technological goal to a research category inclusive of all types of research and technologies that deal with the special properties of matter which occur below the given size threshold. It is therefore common to see the plural form "nanotechnologies" as well as "nanoscale technologies" to refer to the broad range of research and applications whose common trait is size.

<span class="mw-page-title-main">Very Large Scale Integration</span> Creating an integrated circuit by combining many transistors into a single chip

Very large-scale integration (VLSI) is the process of creating an integrated circuit (IC) by combining millions or billions of MOS transistors onto a single chip. VLSI began in the 1970s when MOS integrated circuit chips were widely adopted, enabling complex semiconductor and telecommunication technologies to be developed. The microprocessor and memory chips are VLSI devices. Before the introduction of VLSI technology, most ICs had a limited set of functions they could perform. An electronic circuit might consist of a CPU, ROM, RAM and other glue logic. VLSI enables IC designers to add all of these into one chip.

<span class="mw-page-title-main">Digital electronics</span> Electronic circuits that utilize digital signals

Digital electronics is a field of electronics involving the study of digital signals and the engineering of devices that use or produce them. This is in contrast to analog electronics and analog signals.

<span class="mw-page-title-main">MOSFET</span> Type of field-effect transistor

The metal–oxide–semiconductor field-effect transistor is a type of field-effect transistor (FET), most commonly fabricated by the controlled oxidation of silicon. It has an insulated gate, the voltage of which determines the conductivity of the device. This ability to change conductivity with the amount of applied voltage can be used for amplifying or switching electronic signals. A metal-insulator-semiconductor field-effect transistor or MISFET is a term almost synonymous with MOSFET. Another synonym is IGFET for insulated-gate field-effect transistor.

A nanowire is a nanostructure in the form of a wire with the diameter of the order of a nanometre. More generally, nanowires can be defined as structures that have a thickness or diameter constrained to tens of nanometers or less and an unconstrained length. At these scales, quantum mechanical effects are important—which coined the term "quantum wires".

<span class="mw-page-title-main">Application-specific integrated circuit</span> Integrated circuit customized (typically optimized) for a specific task

An application-specific integrated circuit is an integrated circuit (IC) chip customized for a particular use, rather than intended for general-purpose use. For example, a chip designed to run in a digital voice recorder or a high-efficiency video codec is an ASIC. Application-specific standard product (ASSP) chips are intermediate between ASICs and industry standard integrated circuits like the 7400 series or the 4000 series. ASIC chips are typically fabricated using metal-oxide-semiconductor (MOS) technology, as MOS integrated circuit chips.

<span class="mw-page-title-main">DNA computing</span> Computing using molecular biology hardware

DNA computing is an emerging branch of unconventional computing which uses DNA, biochemistry, and molecular biology hardware, instead of the traditional electronic computing. Research and development in this area concerns theory, experiments, and applications of DNA computing. Although the field originally started with the demonstration of a computing application by Len Adleman in 1994, it has now been expanded to several other avenues such as the development of storage technologies, nanoscale imaging modalities, synthetic controllers and reaction networks, etc.

<span class="mw-page-title-main">Gate array</span>

A gate array is an approach to the design and manufacture of application-specific integrated circuits (ASICs) using a prefabricated chip with components that are later interconnected into logic devices according to a custom order by adding metal interconnect layers in the factory. It was popular during upheaval in semiconductor industry in 80s and its usage declined by end of 90s.

<span class="mw-page-title-main">In silico</span> Latin phrase referring to computer simulations

In biology and other experimental sciences, an in silico experiment is one performed on computer or via computer simulation. The phrase is pseudo-Latin for 'in silicon', referring to silicon in computer chips. It was coined in 1987 as an allusion to the Latin phrases in vivo, in vitro, and in situ, which are commonly used in biology. The latter phrases refer, respectively, to experiments done in living organisms, outside living organisms, and where they are found in nature.

In electronic design, a semiconductor intellectual property core, IP core, or IP block is a reusable unit of logic, cell, or integrated circuit layout design that is the intellectual property of one party. IP cores can be licensed to another party or owned and used by a single party. The term comes from the licensing of the patent or source code copyright that exists in the design. Designers of application-specific integrated circuits (ASIC) and systems of field-programmable gate array (FPGA) logic can use IP cores as building blocks.

<span class="mw-page-title-main">Wetware computer</span>

A wetware computer is an organic computer composed of organic material "wetware" such as "living" neurons. Wetware computers composed of neurons are different than conventional computers because they are thought to be capable in a way of "thinking for themselves", because of the dynamic nature of neurons. While a wetware computer is still largely conceptual, there has been limited success with construction and prototyping, which has acted as a proof of the concept's realistic application to computing in the future. The most notable prototypes have stemmed from the research completed by biological engineer William Ditto during his time at the Georgia Institute of Technology. His work constructing a simple neurocomputer capable of basic addition from leech neurons in 1999 was a significant discovery for the concept. This research acted as a primary example driving interest in the creation of these artificially constructed, but still organic brains.

Nanoelectronics refers to the use of nanotechnology in electronic components. The term covers a diverse set of devices and materials, with the common characteristic that they are so small that inter-atomic interactions and quantum mechanical properties need to be studied extensively. Some of these candidates include: hybrid molecular/semiconductor electronics, one-dimensional nanotubes/nanowires or advanced molecular electronics.

Nanocircuits are electrical circuits operating on the nanometer scale. This is well into the quantum realm, where quantum mechanical effects become very important. One nanometer is equal to 10−9 meters or a row of 10 hydrogen atoms. With such progressively smaller circuits, more can be fitted on a computer chip. This allows faster and more complex functions using less power. Nanocircuits are composed of three different fundamental components. These are transistors, interconnections, and architecture, all fabricated on the nanometer scale.

<span class="mw-page-title-main">PMOS logic</span> Family of digital circuits

PMOS or pMOS logic is a family of digital circuits based on p-channel, enhancement mode metal–oxide–semiconductor field-effect transistors (MOSFETs). In the late 1960s and early 1970s, PMOS logic was the dominant semiconductor technology for large-scale integrated circuits before being superseded by NMOS and CMOS devices.

Nanofluidic circuitry is a nanotechnology aiming for control of fluids in nanometer scale. Due to the effect of an electrical double layer within the fluid channel, the behavior of nanofluid is observed to be significantly different compared with its microfluidic counterparts. Its typical characteristic dimensions fall within the range of 1–100 nm. At least one dimension of the structure is in nanoscopic scale. Phenomena of fluids in nano-scale structure are discovered to be of different properties in electrochemistry and fluid dynamics.

<span class="mw-page-title-main">Tic-tac-toe variants</span> Overview about tic-tac-toe variants

Tic-tac-toe is an instance of an m,n,k-game, where two players alternate taking turns on an m×n board until one of them gets k in a row. Harary's generalized tic-tac-toe is an even broader generalization. The game can also be generalized as a nd game. The game can be generalised even further from the above variants by playing on an arbitrary hypergraph where rows are hyperedges and cells are vertices.

References

  1. Molecular Automata Archived 2006-09-01 at the Wayback Machine
  2. MacDonald, J; Yang Li; Marko Sutovic; Harvey Lederman; Kiran Pendri; Wanhong Lu; Benjamin L. Andrews; Darko Stefanovic; Milan N. Stojanovic (October 2006). "Medium Scale Integration of Molecular Logic Gates in an Automaton". Nano Lett. 6 (11): 2598–2603. Bibcode:2006NanoL...6.2598M. doi:10.1021/nl0620684. ISSN   1530-6984. PMID   17090098.
  3. "Computer versus bacteria". NextNature.net. October 29, 2009. Retrieved 2010-01-10.
  4. Meet MAYA-II, the new DNA computer that can play Tic-Tac-Toe - Engadget
  5. http://acswebapplications.acs.org/applications/ccs/application/index.cfm?PressReleaseID=2724&categoryid=2%5B%5D
  6. "MolecularAutomataMAYAII < McogPublicWeb < TWiki". Archived from the original on 2010-06-18. Retrieved 2010-04-17. MAYA-II