METATOY

Last updated
View through an array of elongated, upright, Dove prisms, forming a METATOY that flips the horizontal direction of transmitted light rays. A green box, stretched in the direction perpendicular to the METATOY, appears bent into a hyperbola when seen through the METATOY. A close-up view of the METATOY can be seen in the following picture. Infinitely long green cuboid seen through a Dove-prism array.png
View through an array of elongated, upright, Dove prisms, forming a METATOY that flips the horizontal direction of transmitted light rays. A green box, stretched in the direction perpendicular to the METATOY, appears bent into a hyperbola when seen through the METATOY. A close-up view of the METATOY can be seen in the following picture.

A METATOY is a sheet, formed by a two-dimensional array of small, telescopic optical components, that switches the path of transmitted light rays. METATOY is an acronym for "metamaterial for rays", representing a number of analogies with metamaterials; METATOYs even satisfy a few definitions of metamaterials, but are certainly not metamaterials in the usual sense. When seen from a distance, the view through each individual telescopic optical component acts as one pixel of the view through the METATOY as a whole. In the simplest case, the individual optical components are all identical; the METATOY then behaves like a homogeneous, but pixellated, window that can have very unusual optical properties (see the picture of the view through a METATOY).

Contents

METATOYs are usually treated within the framework of geometrical optics; the light-ray-direction change performed by a METATOY is described by a mapping of the direction of any incoming light ray onto the corresponding direction of the outgoing ray. The light-ray-direction mappings can be very general. METATOYs can even create pixellated light-ray fields that could not exist in non-pixellated form due to a condition imposed by wave optics. [1]

Much of the work on METATOYs is currently theoretical, backed up by computer simulations. A small number of experiments have been performed to date; more experimental work is ongoing.

Examples of METATOYs

Close-up view of a METATOY formed by an array of upright Dove prisms, seen from above. The view through the METATOY is shown in the previous image. Close-up of Dove-prism array seen from above.png
Close-up view of a METATOY formed by an array of upright Dove prisms, seen from above. The view through the METATOY is shown in the previous image.

Telescopic optical components that have been used as the unit cell of two-dimensional arrays, and which therefore form homogeneous METATOYs, include a pair of identical lenses (focal length ) that share the same optical axis (perpendicular to the METATOY) and that are separated by , that is they share one focal plane (a special case of a refracting telescope with angular magnification -1); [2] a pair of non-identical lenses (focal lengths and ) that share the same optical axis (again perpendicular to the METATOY) and that are separated by , that is they again share one focal plane (a generalization of the former case, a refracting telescope with any angular magnification); [3] a pair of non-identical lenses (focal lengths and ) that share one focal plane, that is, they share the direction of the optical axis, which is not necessarily perpendicular to the METATOY, and they are separated by (a generalization of the former case); [4] a prism; [5] and a Dove prism [6] [7] [8] [9]

Examples of inhomogeneous METATOYs include the moiré magnifier, [10] which is based on deliberately "mis-aligned" pairs of confocal microlens arrays; Fresnel lenses, which can be seen as non-homogeneous METATOYs made from prisms; and frosted glass, which can be seen as an extreme case of an inhomogeneous, random METATOY made from prisms.

Examples of METATOYs as defined above have existed long before analogies with metamaterials were noted and it was recognized that METATOYs can perform wave-optically forbidden ray-direction mappings (in pixellated form). [1]

Wave-optical constraints on light-ray fields and METATOYs

Wave optics describes light at a more fundamental level than geometrical optics. In the ray-optics limit (in which the optical wavelength tends towards zero) of scalar optics (in which light is described as a scalar wave, an approximation that works well for paraxial light with uniform polarization), the light-ray field r corresponding to a light wave is its phase gradient, [11]

where is the phase of the wave . But according to vector calculus, the curl of any gradient is zero, that is

and therefore

This last equation is a condition, derived from wave optics, on light-ray fields. (Each of the three equations that makes up this vector equation expresses the symmetry of the second spatial derivatives, which is how the condition was initially formulated. [1] )

Using the example of ray-rotation sheets, [12] it was shown that METATOYs can create light-ray fields that do not satisfy the above condition on light-ray fields. [1]

Relationship with metamaterials

METATOYs are not metamaterials in the standard sense. The acronym "metamaterial for rays" was chosen because of a number of similarities between METATOYs and metamaterials, [1] which are discussed below, along with the differences. In addition, metamaterials provided the inspiration for early METATOYs research, as summarized in the following quote: [1]

Motivated by the desire to build optical elements that have some of the visual properties of metamaterials on an everyday size scale and across the entire visible wavelength spectrum, we recently started to investigate sheets formed by miniaturized optical elements that change the direction of transmitted light rays.

Similarities with metamaterials

In a number of ways, METATOYs are analogous to metamaterials: [1] structure: metamaterials are arrays of small (sub-wavelength size) wave-optical components (electro-magnetic circuits resonant with the optical frequency), whereas METATOYs are arrays of small (so that they work well as pixels), telescopic, "ray-optical components"; functionality: both metamaterials and METATOYs can behave like homogeneous materials, in the case of metamaterials a volume of material, in the case of METATOYs a sheet material, in both cases with very unusual optical properties such as negative refraction.

Differences with metamaterials

Arguably amongst the most startling properties of metamaterials are some that are fundamentally wave-optical, and therefore not reproduced in METATOYs. These include amplification of evanescent waves, which can, in principle, lead to perfect lenses ("superlenses") [13] and magnifying superlenses ("hyperlenses"); [14] [15] reversal of the phase velocity; reversal of the Doppler shift.

However, because they are not bound by wave-optical constraints on light-ray fields, it can be argued[ by whom? ] that METATOYs can perform light-ray-direction changes that metamaterials could not, unless a METATOY was effectively built out of metamaterials.

See also

Related Research Articles

In optics, polarized light can be described using the Jones calculus, discovered by R. C. Jones in 1941. Polarized light is represented by a Jones vector, and linear optical elements are represented by Jones matrices. When light crosses an optical element the resulting polarization of the emerging light is found by taking the product of the Jones matrix of the optical element and the Jones vector of the incident light. Note that Jones calculus is only applicable to light that is already fully polarized. Light which is randomly polarized, partially polarized, or incoherent must be treated using Mueller calculus.

Lens Optical device which transmits and refracts light

A lens is a transmissive optical device which focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (elements), usually arranged along a common axis. Lenses are made from materials such as glass or plastic, and are ground and polished or molded to a desired shape. A lens can focus light to form an image, unlike a prism, which refracts light without focusing. Devices that similarly focus or disperse waves and radiation other than visible light are also called lenses, such as microwave lenses, electron lenses, acoustic lenses, or explosive lenses.

Optics Branch of physics that studies light

Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.

Refractive index Ratio of the speed of light in vacuum to that in the medium

In optics, the refractive index of a material is a dimensionless number that describes how fast light travels through the material. It is defined as

In electromagnetics, an evanescent field, or evanescent wave, is an oscillating electric and/or magnetic field that does not propagate as an electromagnetic wave but whose energy is spatially concentrated in the vicinity of the source. Even when there is a propagating electromagnetic wave produced, one can still identify as an evanescent field the component of the electric or magnetic field that cannot be attributed to the propagating wave observed at a distance of many wavelengths.

Optical tweezers are scientific instruments that use a highly focused laser beam to hold and move microscopic and sub-microscopic objects like atoms, nanoparticles and droplets, in a manner similar to tweezers. If the object is held in air or vacuum without additional support, it can be called optical levitation.

Gradient-index optics

Gradient-index (GRIN) optics is the branch of optics covering optical effects produced by a gradient of the refractive index of a material. Such gradual variation can be used to produce lenses with flat surfaces, or lenses that do not have the aberrations typical of traditional spherical lenses. Gradient-index lenses may have a refraction gradient that is spherical, axial, or radial.

Geometrical optics, or ray optics, is a model of optics that describes light propagation in terms of rays. The ray in geometric optics is an abstraction useful for approximating the paths along which light propagates under certain circumstances.

Metamaterial Materials engineered to have properties that have not yet been found in nature

A metamaterial is any material engineered to have a property that is not found in naturally occurring materials. They are made from assemblies of multiple elements fashioned from composite materials such as metals and plastics. The materials are usually arranged in repeating patterns, at scales that are smaller than the wavelengths of the phenomena they influence. Metamaterials derive their properties not from the properties of the base materials, but from their newly designed structures. Their precise shape, geometry, size, orientation and arrangement gives them their smart properties capable of manipulating electromagnetic waves: by blocking, absorbing, enhancing, or bending waves, to achieve benefits that go beyond what is possible with conventional materials.

Negative refraction is the electromagnetic phenomenon where light rays become refracted at an interface that is opposite to their more commonly observed positive refractive properties. Negative refraction can be obtained by using a metamaterial which has been designed to achieve a negative value for (electric) permittivity (ε) and (magnetic) permeability (μ); in such cases the material can be assigned a negative refractive index. Such materials are sometimes called "double negative" materials.

A superlens, or super lens, is a lens which uses metamaterials to go beyond the diffraction limit. The diffraction limit is a feature of conventional lenses and microscopes that limits the fineness of their resolution. Many lens designs have been proposed that go beyond the diffraction limit in some way, but constraints and obstacles face each of them.

Self-focusing

Self-focusing is a non-linear optical process induced by the change in refractive index of materials exposed to intense electromagnetic radiation. A medium whose refractive index increases with the electric field intensity acts as a focusing lens for an electromagnetic wave characterized by an initial transverse intensity gradient, as in a laser beam. The peak intensity of the self-focused region keeps increasing as the wave travels through the medium, until defocusing effects or medium damage interrupt this process. Self-focusing of light was discovered by Gurgen Askaryan.

A Compound refractive lens (CRL) is a series of individual lenses arranged in a linear array in order to achieve focusing of X-rays in the energy range of 5-40 keV. They are an alternative to the KB mirror.

Negative-index metamaterial Metamaterials whose refractive index for an electromagnetic wave has a negative value over some frequency range

Negative-index metamaterial or negative-index material (NIM) is a metamaterial whose refractive index for an electromagnetic wave has a negative value over some frequency range.

Quantum mechanics was first applied to optics, and interference in particular, by Paul Dirac. Richard Feynman, in his Lectures on Physics, uses Dirac's notation to describe thought experiments on double-slit interference of electrons. Feynman's approach was extended to N-slit interferometers for either single-photon illumination, or narrow-linewidth laser illumination, that is, illumination by indistinguishable photons, by Frank Duarte. The N-slit interferometer was first applied in the generation and measurement of complex interference patterns.

Metamaterial cloaking

Metamaterial cloaking is the usage of metamaterials in an invisibility cloak. This is accomplished by manipulating the paths traversed by light through a novel optical material. Metamaterials direct and control the propagation and transmission of specified parts of the light spectrum and demonstrate the potential to render an object seemingly invisible. Metamaterial cloaking, based on transformation optics, describes the process of shielding something from view by controlling electromagnetic radiation. Objects in the defined location are still present, but incident waves are guided around them without being affected by the object itself.

History of metamaterials

The history of metamaterials begins with artificial dielectrics in microwave engineering as it developed just after World War II. Yet, there are seminal explorations of artificial materials for manipulating electromagnetic waves at the end of the 19th century. Hence, the history of metamaterials is essentially a history of developing certain types of manufactured materials, which interact at radio frequency, microwave, and later optical frequencies.

Transformation optics

Transformation optics applies metamaterials to produce spatial variations, derived from coordinate transformations, which can direct chosen bandwidths of electromagnetic radiation. This can allow for the construction of new composite artificial devices, which probably could not exist without metamaterials and coordinate transformation. Computing power that became available in the late 1990s enables prescribed quantitative values for the permittivity and permeability, the constitutive parameters, which produce localized spatial variations. The aggregate value of all the constitutive parameters produces an effective value, which yields the intended or desired results.

A flat lens is a lens whose flat shape allows it to provide distortion-free imaging, potentially with arbitrarily-large apertures. The term is also used to refer to other lenses that provide a negative index of refraction. Flat lenses require a refractive index close to −1 over a broad angular range. In recent years, flat lenses based on metasurfaces were also demonstrated.

JCMsuite Simulation software

JCMsuite is a finite element analysis software package for the simulation and analysis of electromagnetic waves, elasticity and heat conduction. It also allows a mutual coupling between its optical, heat conduction and continuum mechanics solvers. The software is mainly applied for the analysis and optimization of nanooptical and microoptical systems. Its applications in research and development projects include dimensional metrology systems, photolithographic systems, photonic crystal fibers, VCSELs, Quantum-Dot emitters, light trapping in solar cells, and plasmonic systems. The design tasks can be embedded into the high-level scripting languages MATLAB and Python, enabling a scripting of design setups in order to define parameter dependent problems or to run parameter scans.

References

  1. 1 2 3 4 5 6 7 A. C. Hamilton and J. Courtial (2009). "Metamaterials for light rays: ray optics without wave-optical analog in the ray-optics limit". New J. Phys. 11 (1): 013042. arXiv: 0809.4370 . Bibcode:2009NJPh...11a3042H. doi:10.1088/1367-2630/11/1/013042. S2CID   3800154.
  2. R. F. Stevens and T. G. Harvey (2002). "Lens arrays for a three-dimensional imaging system". J. Opt. Soc. Am. A. 4 (4): S17–S21. Bibcode:2002JOptA...4S..17S. doi:10.1088/1464-4258/4/4/353. S2CID   53380150.
  3. J. Courtial (2008). "Ray-optical refraction with confocal lenslet arrays". New J. Phys. 10 (8): 083033. Bibcode:2008NJPh...10h3033C. doi: 10.1088/1367-2630/10/8/083033 .
  4. A. C. Hamilton and J. Courtial (2009). "Generalized refraction using lenslet arrays". J. Opt. Soc. Am. A. 11 (6): 065502. arXiv: 0901.3250 . Bibcode:2009JOptA..11f5502H. doi:10.1088/1464-4258/11/6/065502. S2CID   13997880.
  5. Chien-Yue Chen; et al. (2008). "Optics system design applying a micro-prism array of a single lens stereo image pair". Opt. Express. 16 (20): 15495–15505. Bibcode:2008OExpr..1615495C. doi: 10.1364/OE.16.015495 . PMID   18825188.
  6. Tongshu Lian and Ming-Wen Chang (1996). "New types of reflecting prisms and reflecting prism assembly". Optical Engineering. 35 (12): 3427–3431. Bibcode:1996OptEn..35.3427L. doi:10.1117/1.601103.
  7. US 6097554,Watkins, Robert A.,"Multiple Dove Prism Assembly",published 2000-08-01.
  8. J. Courtial and J. Nelson (2008). "Ray-optical negative refraction and pseudoscopic imaging with Dove-prism arrays". New J. Phys. 10 (2): 023028. Bibcode:2008NJPh...10b3028C. doi: 10.1088/1367-2630/10/2/023028 .
  9. A. C. Hamilton and J. Courtial (2008). "Optical properties of a Dove-prism sheet". J. Opt. Soc. Am. A. 10 (12): 125302. Bibcode:2008JOptA..10l5302H. doi:10.1088/1464-4258/10/12/125302.
  10. M. C. Hutley; et al. (1994). "The moiré magnifier". Pure and Applied Optics: Journal of the European Optical Society Part A. 3 (2): 133–142. Bibcode:1994PApOp...3..133H. doi:10.1088/0963-9659/3/2/006.
  11. Landau, L. D.; Lifschitz, E. M. (1992). Klassische Feldtheorie. Akademie Verlag. pp. 154–157. ISBN   978-3-05-501550-2.
  12. A. C. Hamilton; et al. (2009). "Local light-ray rotation". J. Opt. Soc. Am. A.
  13. J. B. Pendry (2000). "Negative Refraction Makes a Perfect Lens". Phys. Rev. Lett. 85 (18): 3966–3969. Bibcode:2000PhRvL..85.3966P. doi:10.1103/PhysRevLett.85.3966. PMID   11041972.
  14. Z. Jacob; et al. (2006). "Optical Hyperlens: Far-field imaging beyond the diffraction limit". Opt. Express. 14 (18): 8247–8256. arXiv: physics/0607277 . Bibcode:2006OExpr..14.8247J. doi:10.1364/OE.14.008247. PMID   19529199. S2CID   11542914.
  15. Z. Liu; et al. (2007). "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects". Science. 315 (5819): 1686. Bibcode:2007Sci...315.1686L. CiteSeerX   10.1.1.708.3342 . doi:10.1126/science.1137368. PMID   17379801. S2CID   5917552.