MIR22HG | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | MIR22HG , C17orf91, MIR22 host gene | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | GeneCards: MIR22HG | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
MIR22HG (MIR22 host gene), also known as C17orf91, [3] MGC14376, [4] MIRN22, hsa-mir-22, and miR-22 [5] is a human gene that encodes a noncoding RNA (ncRNA).This RNA molecule is not translated into a protein but nonetheless may have important functions.
MIR22HG ncRNA is greater than 200 nucleotides in length and therefore informally classified as a long non-coding RNA, i.e. lncRNA. The MIR22HG gene is located at band 13.3 on the short (or "p") arm of chromosome 17. It is expressed in each of the 27 human tissues tested. [3]
Many lncRNAs regulate diverse processes including cellular metabolism, proliferation, movement, differentiation (i.e. change of a cell from one type to another, usually more mature, cell type), apoptosis (i.e. programmed cell death), and the expression of various genes through chromatin remodeling, genomic imprinting, modulating the actions of other RNAs, and various other ways. [6] The normal actions and functions of the MIR22HG gene are complex and have not been fully elucidated, but its primary function may be as a tumor suppressor gene. [7] It is involved in the regulation of several signaling pathways including Wnt/β-catenin, epithelial-mesenchymal transition (EMT), notch, and STAT3. [7]
When overexpressed, it acts as a tumor suppressor gene in many cancer types but in a few cancer types it acts as an oncogene, i.e. a tumor promotor gene: MIR22HG gene's impact on various cancers is strictly dependent on the type of cancer in which it operates. [8]
The roles or the MIR22HG gene in cancers have generally been evaluated by: a) next-generation sequencing to quantify the levels of MIR22HG RNA in cancer samples, samples of nearby normal tissue of the same type as the cancer, and cultured cancer cells of the same type as the cancers; b) comparing MIR22HG lncRNA levels in patients with the same cancer to the severity (e.g. aggressiveness, recurrence rate, and survival rate) of their cancers; c) determining the potential mechanisms for the MIR22HG lncRNA's actions, generally by defining the effects of varying the levels of this lncRNA on various cancer-promoting or cancer-inhibiting cell signaling pathways in cultured cancer cells; and d) determining the activity of these cell signaling pathways in cancer tissues. These studies are important because they established the levels of MIR22HG lncRNA as prognosis indicators and suggest that this lncRNA and the implicated cancerous signaling pathways are therapeutic targets for treating these cancers. [7]
Some of the cancer types that have been associated with the MIR22HG gene and its lncRNA product acting to suppress the cancer are:
Some reports have suggested that the MIR22HG gene acts as a tumor suppressor based on examining the effects of MIR22HG lncRNA levels on cultured cancer cell function and/or and tumor spread in animal models and/or the levels of MIR22HR lncRNA in cancer versus normal nearby tissues. However, these reports did not determine the relationship of MIR22HG levels in patients' cancer tissues to their prognoses. These reports include those on: osteosarcoma, [24] cancer of the uterus endometrium, [25] and cancer of the larynx. [26]
The MIR22HG gene acted as a tumor promotor in squamous cell carcinoma of the esophagus based on studies showing that suppressing its levels in various types of cultured esophagus squamous-cell carcinoma cells inhibited their proliferation, invasiveness, and ability to form colonies and also increased their apoptosis. The cell culture studies suggested that decreasing MIR22HG lncRNA levels produced these results by decreasing the expression of STAT3, c-Myc, and PTK2. [7] [28]
Autocrine signaling is a form of cell signaling in which a cell secretes a hormone or chemical messenger that binds to autocrine receptors on that same cell, leading to changes in the cell. This can be contrasted with paracrine signaling, intracrine signaling, or classical endocrine signaling.
There are 89 known sequences today in the microRNA 19 (miR-19) family but it will change quickly. They are found in a large number of vertebrate species. The miR-19 microRNA precursor is a small non-coding RNA molecule that regulates gene expression. Within the human and mouse genome there are three copies of this microRNA that are processed from multiple predicted precursor hairpins:
A metastasis suppressor is a protein that acts to slow or prevent metastases from spreading in the body of an organism with cancer. Metastasis is one of the most lethal cancer processes. This process is responsible for about ninety percent of human cancer deaths. Proteins that act to slow or prevent metastases are different from those that act to suppress tumor growth. Genes for about a dozen such proteins are known in humans and other animals.
Transcription factor 21 (TCF21), also known as pod-1, capsuling, or epicardin, is a protein that in humans is encoded by the TCF21 gene on chromosome 6. It is ubiquitously expressed in many tissues and cell types and highly significantly expressed in lung and placenta. TCF21 is crucial for the development of a number of cell types during embryogenesis of the heart, lung, kidney, and spleen. TCF21 is also deregulated in several types of cancers, and thus known to function as a tumor suppressor. The TCF21 gene also contains one of 27 SNPs associated with increased risk of coronary artery disease.
Epithelial membrane protein 3 (EMP3) is a trans-membrane signaling molecule that is encoded by the myelin-related gene EMP3. EMP3 is a member of the peripheral myelin protein gene family 22-kDa (PMP22), which is mainly responsible for the formation of the sheath of compact myelin. Although the detailed functions and mechanisms of EMP3 still remain unclear, it is suggested that EMP3 is possibly epigenetically linked to certain carcinomas.
JADE1 is a protein that in humans is encoded by the JADE1 gene.
Copine-1, is a protein that in humans is encoded by the CPNE1 gene.
Cinobufagin is a cardiotoxic bufanolide steroid secreted by the Asiatic toad Bufo gargarizans. It has similar effects to digitalis and is used in traditional Chinese medicine.
The Hippo signaling pathway, also known as the Salvador-Warts-Hippo (SWH) pathway, is a signaling pathway that controls organ size in animals through the regulation of cell proliferation and apoptosis. The pathway takes its name from one of its key signaling components—the protein kinase Hippo (Hpo). Mutations in this gene lead to tissue overgrowth, or a "hippopotamus"-like phenotype.
In molecular biology mir-126 is a short non-coding RNA molecule. MicroRNAs function to regulate the expression levels of other genes by several pre- and post-transcription mechanisms.
In molecular biology, miR-184 microRNA is a short non-coding RNA molecule. MicroRNAs (miRNAs) function as posttranscriptional regulators of expression levels of other genes by several mechanisms. Several targets for miR-184 have been described, including that of mediators of neurological development, apoptosis and it has been suggested that miR-184 plays an essential role in development.
MALAT 1 also known as NEAT2 is a large, infrequently spliced non-coding RNA, which is highly conserved amongst mammals and highly expressed in the nucleus. MALAT1 was identified in multiple types of physiological processes, such as alternative splicing, nuclear organization, epigenetic modulating of gene expression, and a number of evidences indicate that MALAT1 also closely relate to various pathological processes, ranging from diabetes complications to cancers. It regulates the expression of metastasis-associated genes. It also positively regulates cell motility via the transcriptional and/or post-transcriptional regulation of motility-related genes. MALAT1 may play a role in temperature-dependent sex determination in the Red-eared slider turtle.
HOXA11-AS lncRNA is a long non-coding RNA from the antisense strand in the homeobox A. The HOX gene contains four clusters. The sense strand of the HOXA gene codes for proteins. Alternative names for HOXA11-AS lncRNA are: HOXA-AS5, HOXA11S, HOXA11-AS1, HOXA11AS, or NCRNA00076. This gene is 3,885 nucleotides long and resides at chromosome 7 (7p15.2) and is transcribed from an independent gene promoter. Being a lncRNA, it is longer than 200 nucleotides in length, in contrast to regular non-coding RNAs.
In molecular biology mir-708 microRNA is a short RNA molecule. MicroRNAs function to regulate the expression levels of other genes by several mechanisms. miR-708 is located on chromosome 11q14.1 and is endcoded in intron 1 of the ODZ4 gene. It is most highly expressed in the brain and eyes, and has a supposed role in endoplasmic reticular stress of the eye.
XB130 is a cytosolic adaptor protein and signal transduction mediator. XB130 regulates cell proliferation, cell survival, cell motility and gene expression. XB130 is highly similar to AFAP and is thus known as actin filament associated protein 1-like 2 (AFAP1L2). XB130 is a substrate and regulator of multiple tyrosine kinase-mediated signaling. XB130 is highly expressed in the thyroid and spleen.
Cytoskeleton regulator RNA is a long non-coding RNA that in humans is encoded by the CYTOR gene.
Small nucleolar RNA host gene 1 is a non-protein coding RNA that in humans is encoded by the SNHG1 gene.
CKLF-like MARVEL transmembrane domain-containing 5 (CMTM5), previously termed chemokine-like factor superfamily 5, designates any one of the six protein isoforms encoded by six different alternative splices of its gene, CMTM5; CMTM5-v1 is the most studied of these isoforms. The CMTM5 gene is located in band 11.2 on the long arm of chromosome 14.
CKLF like MARVEL transmembrane domain-containing 1, formerly termed chemokine-like factor superfamily 1, has 23 known isoforms, the CMTM1-v1 to CMTM1-v23 proteins. Protein isoforms are variant products that are made by alternative splicing of a single gene. The gene for these isoforms, CMTM1, is located in band 22 on the long arm of chromosome 16. The CMTM1 gene and its 23 isoforms belong to the CKLF-like MARVEL transmembrane domain-containing family of structurally and functionally related genes and proteins. CMTM1 proteins are weakly express in a wide range of normal tissues but are far more highly expressed in normal testes as well as the malignant cells of certain types of cancer.