Mache (unit)

Last updated

Mache (symbol ME from German Mache-Einheit, plural Maches) is a unit of volumic radioactivity named for the Austrian physicist Heinrich Mache. [1] It was defined as the quantity of radon (ignoring its daughter isotopes; in practice, mostly radon-222) per litre of air which ionises a sustained current of 0.001 esu (0.001 StatAmpere).

1 ME = 3.64 Eman = 3.64×10−10 Ci/L = 13.4545 Bq/L.

Related Research Articles

Background radiation is a measure of the level of ionizing radiation present in the environment at a particular location which is not due to deliberate introduction of radiation sources.

<span class="mw-page-title-main">Noble gas</span> Group of low-reactive, gaseous chemical elements

The noble gases make up a class of chemical elements with similar properties; under standard conditions, they are all odorless, colorless, monatomic gases with very low chemical reactivity. The six naturally occurring noble gases are helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), and the radioactive radon (Rn).

<span class="mw-page-title-main">Radon</span> Chemical element, symbol Rn and atomic number 86

Radon is a chemical element with the symbol Rn and atomic number 86. It is a radioactive, colourless, odourless, tasteless noble gas. It occurs naturally in minute quantities as an intermediate step in the normal radioactive decay chains through which thorium and uranium slowly decay into various short-lived radioactive elements and eventually into stable lead. Radon itself is the immediate decay product of radium. Its most stable isotope, 222Rn, has a half-life of only 3.8 days, making it one of the rarest elements. Since thorium and uranium are two of the most common radioactive elements on Earth, while also having three isotopes with half-lives on the order of several billion years, radon will be present on Earth long into the future despite its short half-life. The decay of radon produces many other short-lived nuclides, known as "radon daughters", ending at stable isotopes of lead.

<span class="mw-page-title-main">Radon difluoride</span> Chemical compound

Radon difluoride is a compound of radon, a radioactive noble gas. Radon reacts readily with fluorine to form a solid compound, but this decomposes on attempted vaporization and its exact composition is uncertain. Calculations suggest that it may be ionic, unlike all other known binary noble gas compounds. The usefulness of radon compounds is limited because of the radioactivity of radon. The longest-lived isotope, radon-222, has a half-life of only 3.82 days, which decays by α-emission to yield polonium-218.

<span class="mw-page-title-main">Super-Kamiokande</span> Japanese neutrino observatory

Super-Kamiokande is a neutrino observatory located under Mount Ikeno near the city of Hida, Gifu Prefecture, Japan. It is located 1,000 m (3,300 ft) underground in the Mozumi Mine in Hida's Kamioka area. The observatory was designed to detect high-energy neutrinos, to search for proton decay, study solar and atmospheric neutrinos, and keep watch for supernovae in the Milky Way Galaxy.

<span class="mw-page-title-main">Oganesson</span> Chemical element, symbol Og and atomic number 118

Oganesson is a synthetic chemical element with the symbol Og and atomic number 118. It was first synthesized in 2002 at the Joint Institute for Nuclear Research (JINR) in Dubna, near Moscow, Russia, by a joint team of Russian and American scientists. In December 2015, it was recognized as one of four new elements by the Joint Working Party of the international scientific bodies IUPAC and IUPAP. It was formally named on 28 November 2016. The name honors the nuclear physicist Yuri Oganessian, who played a leading role in the discovery of the heaviest elements in the periodic table. It is one of only two elements named after a person who was alive at the time of naming, the other being seaborgium, and the only element whose eponym is alive as of 2023.

<span class="mw-page-title-main">Indoor air quality</span> Air quality within and around buildings and structures

Indoor air quality (IAQ) is the air quality within and around buildings and structures. IAQ is known to affect the health, comfort, and well-being of building occupants. Poor indoor air quality has been linked to sick building syndrome, reduced productivity, and impaired learning in schools. Common pollutants of indoor air include: secondhand tobacco smoke, air pollutants from indoor combustion, radon, molds and other allergens, carbon monoxide, volatile organic compounds, legionella and other bacteria, asbestos fibers, carbon dioxide, ozone and particulates. Source control, filtration, and the use of ventilation to dilute contaminants are the primary methods for improving indoor air quality.

<span class="mw-page-title-main">Radon transform</span> Integral transform

In mathematics, the Radon transform is the integral transform which takes a function f defined on the plane to a function Rf defined on the (two-dimensional) space of lines in the plane, whose value at a particular line is equal to the line integral of the function over that line. The transform was introduced in 1917 by Johann Radon, who also provided a formula for the inverse transform. Radon further included formulas for the transform in three dimensions, in which the integral is taken over planes. It was later generalized to higher-dimensional Euclidean spaces and more broadly in the context of integral geometry. The complex analogue of the Radon transform is known as the Penrose transform. The Radon transform is widely applicable to tomography, the creation of an image from the projection data associated with cross-sectional scans of an object.

In mathematics, a Radon measure, named after Johann Radon, is a measure on the σ-algebra of Borel sets of a Hausdorff topological space X that is finite on all compact sets, outer regular on all Borel sets, and inner regular on open sets. These conditions guarantee that the measure is "compatible" with the topology of the space, and most measures used in mathematical analysis and in number theory are indeed Radon measures.

<i>Valerianella locusta</i> Species of flowering plant in the honeysuckle family Caprifoliaceae

Valerianella locusta, called mâche or mache; common cornsalad; or lamb's lettuce, is a small, herbaceous, annual flowering plant in the honeysuckle family Caprifoliaceae. It is native to Europe, western Asia and north Africa, where it is eaten as a leaf vegetable.

<span class="mw-page-title-main">Radiation hormesis</span> Hypothesis regarding low doses of ionizing radiation on health

Radiation hormesis is the hypothesis that low doses of ionizing radiation are beneficial, stimulating the activation of repair mechanisms that protect against disease, that are not activated in absence of ionizing radiation. The reserve repair mechanisms are hypothesized to be sufficiently effective when stimulated as to not only cancel the detrimental effects of ionizing radiation but also inhibit disease not related to radiation exposure. This hypothesis has captured the attention of scientists and public alike in recent years.

<span class="mw-page-title-main">Bad Gastein</span> Place in Salzburg, Austria

Bad Gastein is a spa town in the district of St. Johann im Pongau, in the Austrian state of Salzburg. Picturesquely situated in a high valley of the Hohe Tauern mountain range, it is known for the Gastein Waterfall and a variety of Belle Époque hotel buildings.

There are 39 known isotopes of radon (86Rn), from 193Rn to 231Rn; all are radioactive. The most stable isotope is 222Rn with a half-life of 3.823 days, which decays into 218
Po
. Five isotopes of radon, 217, 218, 219, 220, 222Rn, occur in trace quantities in nature as decay products of, respectively, 217At, 218At, 223Ra, 224Ra, and 226Ra. 217Rn is produced in a rare branch in the decay chain of trace quantities of 237Np; 222Rn is an intermediate step in the decay chain for 238U; 219Rn is an intermediate step in the decay chain for 235U; and 220Rn occurs in the decay chain for 232Th.

In mathematics, the Bochner integral, named for Salomon Bochner, extends the definition of Lebesgue integral to functions that take values in a Banach space, as the limit of integrals of simple functions.

Radon mitigation is any process used to reduce radon gas concentrations in the breathing zones of occupied buildings, or radon from water supplies. Radon is a significant contributor to environmental radioactivity and can cause serious health problems such as lung cancer.

<span class="mw-page-title-main">Radium and radon in the environment</span> Significant contributors to environmental radioactivity

Radium and radon are important contributors to environmental radioactivity. Radon occurs naturally as a result of decay of radioactive elements in soil and it can accumulate in houses built on areas where such decay occurs. Radon is a major cause of cancer; it is estimated to contribute to ~2% of all cancer related deaths in Europe.

<span class="mw-page-title-main">Radon Labs</span> German video game developer

Radon Labs was a German video game developer based in Berlin. The company was founded in 2000 as a spin-off of the company Terratools. Radon Labs has its headquarters in Berlin and a second development studio in Halle-Leipzig. The company filed for bankruptcy in May 2010 and was bought by the browsergames publisher Bigpoint GmbH.

Radon, a radioactive, colorless, odorless, tasteless noble gas, has been studied by a number of scientific and medical bodies for its effects on health. A naturally-occurring gas formed as a decay product of radium, radon is one of the densest substances that remains a gas under normal conditions, and is considered to be a health hazard due to its radioactivity. Its most stable isotope, radon-222, has a half-life of 3.8 days. Due to its high radioactivity, it has been less well studied by chemists, but a few compounds are known.

<span class="mw-page-title-main">Heinrich Mache</span> Austrian physicist

Heinrich Mache was an Austrian physicist. He won the Haitinger Prize of the Austrian Academy of Sciences in 1915.

Working level (WL) is a historical unit of concentration of radioactive decay products of radon, applied to uranium mining environment. One working level refers to the concentration of short-lived decay products of radon in equilibrium with 3,700 Bq/m3 (100 pCi/L) in air. These decay products would emit 1.3 × 105 MeV in complete decay. The Nuclear Regulatory Commission uses this definition.

References

  1. Riezler, Wolfgang [in German] (1950). Einführung in die Kernphysik (4 ed.). H. Hübener. p. 49. Retrieved 2009-09-25.