Magnetic catalysis

Last updated

Magnetic catalysis is a physics phenomenon, which is defined as an enhancement of dynamical symmetry breaking by an external magnetic field in quantum field theory, used for the description of quantum (quasi-)particles in particle physics, nuclear physics and condensed matter physics. The underlying phenomenon is a consequence of the strong tendency of a magnetic field to enhance binding of oppositely charged particles into bound states. The catalyzing effect comes from a partial restriction (dimensional reduction) of the motion of charged particles in the directions perpendicular to the direction of the magnetic field. Commonly, the magnetic catalysis is specifically associated with spontaneous breaking of flavor or chiral symmetry in quantum field theory, which is enhanced or triggered by the presence of an external magnetic field.

Contents

General description

The underlying mechanism behind magnetic catalysis [1] is the dimensional reduction of low-energy charged spin-1/2 particles. [2] As a result of such a reduction, there exists a strong enhancement of the particle-antiparticle pairing responsible for symmetry breaking. For gauge theories in 3+1 space-time dimensions, such as quantum electrodynamics and quantum chromodynamics, the dimensional reduction leads to an effective (1+1)-dimensional low-energy dynamics. (Here the dimensionality of space-time is written as D+1 for D spatial directions.) In simple terms, the dimensional reduction reflects the fact that the motion of charged particles is (partially) restricted in the two space-like directions perpendicular to the magnetic field. However, this orbital motion constraint alone is not sufficient (for example, there is no dimensional reduction for charged scalar particles, carrying spin 0, although their orbital motion is constrained in the same way.) It is also important that the fermions have spin 1/2 and, as follows from the Atiyah–Singer index theorem, their lowest Landau level states have an energy independent of the magnetic field. (The corresponding energy vanishes in the case of massless particles.) This is in contrast to the energies in the higher Landau levels, which are proportional to the square root of the magnetic field. Therefore, if the field is sufficiently strong, only the lowest Landau level states are dynamically accessible at low energies. The states in the higher Landau levels decouple and become almost irrelevant. The phenomenon of magnetic catalysis has applications in particle physics, nuclear physics and condensed matter physics.

Applications

Chiral symmetry breaking in quantum chromodynamics

In the theory of quantum chromodynamics, magnetic catalysis can be applied when quark matter is subject to extremely strong magnetic fields. [3] Such strong magnetic fields can lead to more pronounced effects of chiral symmetry breaking, e.g., lead to (i) a larger value of the chiral condensate, (ii) a larger dynamical (constituent) mass of quarks, (iii) larger baryon masses, (iv) modified pion decay constant, etc. Recently, there was an increased activity to cross-check the effects of magnetic catalysis in the limit of a large number of colors, using the technique of AdS/CFT correspondence. [4] [5] [6]

Quantum Hall effect in graphene

The idea of magnetic catalysis can be used to explain the observation of new quantum Hall plateaus in graphene in strong magnetic fields beyond the standard anomalous sequence at filling factors ν=4(n+½) where n is an integer. The additional quantum Hall plateaus develop at ν=0, ν=±1, ν=±3 and ν=±4.

The mechanism of magnetic catalysis in a relativistic-like planar systems such as graphene is very natural. In fact, it was originally proposed for a 2+1 dimensional model, which is almost the same as the low-energy effective theory of graphene written in terms of massless Dirac fermions. [7] In application to a single layer of graphite (i.e., graphene), magnetic catalysis triggers the breakdown of an approximate internal symmetry and, thus, lifts the 4-fold degeneracy of Landau levels. [8] [9] It can be shown to occur for relativistic massless fermions with weak repulsive interactions. [10]

Related Research Articles

<span class="mw-page-title-main">Standard Model</span> Theory of forces and subatomic particles

The Standard Model of particle physics is the theory describing three of the four known fundamental forces in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, proof of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy.

The quantum Hall effect is a quantized version of the Hall effect which is observed in two-dimensional electron systems subjected to low temperatures and strong magnetic fields, in which the Hall resistance Rxy exhibits steps that take on the quantized values

<span class="mw-page-title-main">Lepton</span> Class of elementary particles

In particle physics, a lepton is an elementary particle of half-integer spin that does not undergo strong interactions. Two main classes of leptons exist: charged leptons, and neutral leptons. Charged leptons can combine with other particles to form various composite particles such as atoms and positronium, while neutrinos rarely interact with anything, and are consequently rarely observed. The best known of all leptons is the electron.

<span class="mw-page-title-main">Technicolor (physics)</span> Hypothetical model through which W and Z bosons acquire mass

Technicolor theories are models of physics beyond the Standard Model that address electroweak gauge symmetry breaking, the mechanism through which W and Z bosons acquire masses. Early technicolor theories were modelled on quantum chromodynamics (QCD), the "color" theory of the strong nuclear force, which inspired their name.

<span class="mw-page-title-main">Spontaneous symmetry breaking</span> Symmetry breaking through the vacuum state

Spontaneous symmetry breaking is a spontaneous process of symmetry breaking, by which a physical system in a symmetric state spontaneously ends up in an asymmetric state. In particular, it can describe systems where the equations of motion or the Lagrangian obey symmetries, but the lowest-energy vacuum solutions do not exhibit that same symmetry. When the system goes to one of those vacuum solutions, the symmetry is broken for perturbations around that vacuum even though the entire Lagrangian retains that symmetry.

In theoretical physics, a chiral anomaly is the anomalous nonconservation of a chiral current. In everyday terms, it is equivalent to a sealed box that contained equal numbers of left and right-handed bolts, but when opened was found to have more left than right, or vice versa.

<span class="mw-page-title-main">Anomaly (physics)</span> Asymmetry of classical and quantum action

In quantum physics an anomaly or quantum anomaly is the failure of a symmetry of a theory's classical action to be a symmetry of any regularization of the full quantum theory. In classical physics, a classical anomaly is the failure of a symmetry to be restored in the limit in which the symmetry-breaking parameter goes to zero. Perhaps the first known anomaly was the dissipative anomaly in turbulence: time-reversibility remains broken at the limit of vanishing viscosity.

In lattice field theory, fermion doubling occurs when naively putting fermionic fields on a lattice, resulting in more fermionic states than expected. For the naively discretized Dirac fermions in Euclidean dimensions, each fermionic field results in identical fermion species, referred to as different tastes of the fermion. The fermion doubling problem is intractably linked to chiral invariance by the Nielsen–Ninomiya theorem. Most strategies used to solve the problem require using modified fermions which reduce to the Dirac fermion only in the continuum limit.

The Gross–Neveu (GN) model is a quantum field theory model of Dirac fermions interacting via four-fermion interactions in 1 spatial and 1 time dimension. It was introduced in 1974 by David Gross and André Neveu as a toy model for quantum chromodynamics (QCD), the theory of strong interactions. It shares several features of the QCD: GN theory is asymptotically free thus at strong coupling the strength of the interaction gets weaker and the corresponding function of the interaction coupling is negative, the theory has a dynamical mass generation mechanism with chiral symmetry breaking, and in the large number of flavor limit, GN theory behaves as t'Hooft's large limit in QCD.

<span class="mw-page-title-main">Topological order</span> Type of order at absolute zero

In physics, topological order is a kind of order in the zero-temperature phase of matter. Macroscopically, topological order is defined and described by robust ground state degeneracy and quantized non-Abelian geometric phases of degenerate ground states. Microscopically, topological orders correspond to patterns of long-range quantum entanglement. States with different topological orders cannot change into each other without a phase transition.

The quantum spin Hall state is a state of matter proposed to exist in special, two-dimensional semiconductors that have a quantized spin-Hall conductance and a vanishing charge-Hall conductance. The quantum spin Hall state of matter is the cousin of the integer quantum Hall state, and that does not require the application of a large magnetic field. The quantum spin Hall state does not break charge conservation symmetry and spin- conservation symmetry.

In particle physics and string theory (M-theory), the ADD model, also known as the model with large extra dimensions (LED), is a model framework that attempts to solve the hierarchy problem. The model tries to explain this problem by postulating that our universe, with its four dimensions, exists on a membrane in a higher dimensional space. It is then suggested that the other forces of nature operate within this membrane and its four dimensions, while the hypothetical gravity-bearing particle graviton can propagate across the extra dimensions. This would explain why gravity is very weak compared to the other fundamental forces. The size of the dimensions in ADD is around the order of the TeV scale, which results in it being experimentally probeable by current colliders, unlike many exotic extra dimensional hypotheses that have the relevant size around the Planck scale.

A composite fermion is the topological bound state of an electron and an even number of quantized vortices, sometimes visually pictured as the bound state of an electron and, attached, an even number of magnetic flux quanta. Composite fermions were originally envisioned in the context of the fractional quantum Hall effect, but subsequently took on a life of their own, exhibiting many other consequences and phenomena.

In particle physics, composite Higgs models (CHM) are speculative extensions of the Standard Model (SM) where the Higgs boson is a bound state of new strong interactions. These scenarios are models for physics beyond the SM presently tested at the Large Hadron Collider (LHC) in Geneva.

<span class="mw-page-title-main">Dark photon</span> Hypothetical force carrier particle connected to dark matter

The dark photon is a hypothetical hidden sector particle, proposed as a force carrier similar to the photon of electromagnetism but potentially connected to dark matter. In a minimal scenario, this new force can be introduced by extending the gauge group of the Standard Model of Particle Physics with a new abelian U(1) gauge symmetry. The corresponding new spin-1 gauge boson can then couple very weakly to electrically charged particles through kinetic mixing with the ordinary photon and could thus be detected. The dark photon can also interact with the Standard Model if some of the fermions are charged under the new abelian group. The possible charging arrangements are restricted by a number of consistency requirements such as anomaly cancellation and constraints coming from Yukawa matrices.

<span class="mw-page-title-main">Electronic properties of graphene</span>

Graphene is a semimetal whose conduction and valence bands meet at the Dirac points, which are six locations in momentum space, the vertices of its hexagonal Brillouin zone, divided into two non-equivalent sets of three points. The two sets are labeled K and K'. The sets give graphene a valley degeneracy of gv = 2. By contrast, for traditional semiconductors the primary point of interest is generally Γ, where momentum is zero. Four electronic properties separate it from other condensed matter systems.

The term Dirac matter refers to a class of condensed matter systems which can be effectively described by the Dirac equation. Even though the Dirac equation itself was formulated for fermions, the quasi-particles present within Dirac matter can be of any statistics. As a consequence, Dirac matter can be distinguished in fermionic, bosonic or anyonic Dirac matter. Prominent examples of Dirac matter are Graphene, topological insulators, Dirac semimetals, Weyl semimetals, various high-temperature superconductors with -wave pairing and liquid Helium-3. The effective theory of such systems is classified by a specific choice of the Dirac mass, the Dirac velocity, the Dirac matrices and the space-time curvature. The universal treatment of the class of Dirac matter in terms of an effective theory leads to a common features with respect to the density of states, the heat capacity and impurity scattering.

Higher-spin theory or higher-spin gravity is a common name for field theories that contain massless fields of spin greater than two. Usually, the spectrum of such theories contains the graviton as a massless spin-two field, which explains the second name. Massless fields are gauge fields and the theories should be (almost) completely fixed by these higher-spin symmetries. Higher-spin theories are supposed to be consistent quantum theories and, for this reason, to give examples of quantum gravity. Most of the interest in the topic is due to the AdS/CFT correspondence where there is a number of conjectures relating higher-spin theories to weakly coupled conformal field theories. It is important to note that only certain parts of these theories are known at present and not many examples have been worked out in detail except some specific toy models.

The axial current, also denoted the pseudo-vector or chiral current, is the conserved current associated to the chiral symmetry or axial symmetry of a system.

References

  1. Gusynin, V. P.; Miransky, V. A.; Shovkovy, I. A. (1994). "Catalysis of Dynamical Flavor Symmetry Breaking by a Magnetic Field in 2 + 1 Dimensions". Physical Review Letters. 73 (26): 3499–3502. arXiv: hep-ph/9405262 . Bibcode:1994PhRvL..73.3499G. doi:10.1103/PhysRevLett.73.3499. PMID   10057399.
  2. Shovkovy, Igor A. (2013). "Magnetic Catalysis: A Review". Strongly Interacting Matter in Magnetic Fields. Lecture Notes in Physics. Vol. 871. springer.com. pp. 13–49. CiteSeerX   10.1.1.750.925 . doi:10.1007/978-3-642-37305-3_2. ISBN   978-3-642-37304-6. S2CID   118087122.
  3. Miransky, V. A.; Shovkovy, I. A. (2002-08-15). "Magnetic catalysis and anisotropic confinement in QCD". Physical Review D. American Physical Society (APS). 66 (4): 045006. arXiv: hep-ph/0205348 . Bibcode:2002PhRvD..66d5006M. doi:10.1103/physrevd.66.045006. ISSN   0556-2821. S2CID   8302462.
  4. Filev, Veselin G; Johnson, Clifford V; Rashkov, Radoslav C; Viswanathan, K. Sankaran (2007-10-03). "Flavoured largeNgauge theory in an external magnetic field". Journal of High Energy Physics. 2007 (10): 019. arXiv: hep-th/0701001 . Bibcode:2007JHEP...10..019F. doi: 10.1088/1126-6708/2007/10/019 . ISSN   1029-8479.
  5. Preis, Florian; Rebhan, Anton; Schmitt, Andreas (2011). "Inverse magnetic catalysis in dense holographic matter". Journal of High Energy Physics. 2011 (3): 033. arXiv: 1012.4785 . Bibcode:2011JHEP...03..033P. doi: 10.1007/jhep03(2011)033 . ISSN   1029-8479.
  6. Filev, Veselin; Rashkov, Radoslav (2010). "Magnetic Catalysis of Chiral Symmetry Breaking: A Holographic Prospective". Advances in High Energy Physics. Hindawi Limited. 2010: 1–56. arXiv: 1010.0444 . doi: 10.1155/2010/473206 . ISSN   1687-7357.
  7. G. W. Semenoff, Phys. Rev. Lett. 53, 2449–2452 (1984)
  8. D. V. Khveshchenko, Phys. Rev. Lett. 87, 206401 (2001), cond-mat/0106261
  9. E. V. Gorbar, V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy, Phys. Rev. B 66, 045108 (2002), cond-mat/0202422
  10. Gordon W. Semenoff and Fei Zhou, JHEP 1107:037,2011, arXiv:1104.4714