Manin triple

Last updated

In mathematics, a Manin triple consists of a Lie algebra with a non-degenerate invariant symmetric bilinear form, together with two isotropic subalgebras and such that is the direct sum of and as a vector space. A closely related concept is the (classical) Drinfeld double, which is an even dimensional Lie algebra which admits a Manin decomposition.

Contents

Manin triples were introduced by Vladimir Drinfeld in 1987, who named them after Yuri Manin. [1]

In 2001 Delorme  [ fr ] classified Manin triples where is a complex reductive Lie algebra. [2]

Manin triples and Lie bialgebras

There is an equivalence of categories between finite-dimensional Manin triples and finite-dimensional Lie bialgebras.

More precisely, if is a finite-dimensional Manin triple, then can be made into a Lie bialgebra by letting the cocommutator map be the dual of the Lie bracket (using the fact that the symmetric bilinear form on identifies with the dual of ).

Conversely if is a Lie bialgebra then one can construct a Manin triple by letting be the dual of and defining the commutator of and to make the bilinear form on invariant.

Examples

Related Research Articles

In mathematics, an associative algebraA over a commutative ring K is a ring A together with a ring homomorphism from K into the center of A. This is thus an algebraic structure with an addition, a multiplication, and a scalar multiplication. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a module or vector space over K. In this article we will also use the term K-algebra to mean an associative algebra over K. A standard first example of a K-algebra is a ring of square matrices over a commutative ring K, with the usual matrix multiplication.

<span class="mw-page-title-main">Lie algebra</span> Algebraic structure used in analysis

In mathematics, a Lie algebra is a vector space together with an operation called the Lie bracket, an alternating bilinear map , that satisfies the Jacobi identity. In other words, a Lie algebra is an algebra over a field for which the multiplication operation is alternating and satisfies the Jacobi identity. The Lie bracket of two vectors and is denoted . A Lie algebra is typically a non-associative algebra. However, every associative algebra gives rise to a Lie algebra, consisting of the same vector space with the commutator Lie bracket, .

In mathematics, a Lie superalgebra is a generalisation of a Lie algebra to include a ‑grading. Lie superalgebras are important in theoretical physics where they are used to describe the mathematics of supersymmetry.

<span class="mw-page-title-main">Lie algebra representation</span>

In the mathematical field of representation theory, a Lie algebra representation or representation of a Lie algebra is a way of writing a Lie algebra as a set of matrices in such a way that the Lie bracket is given by the commutator. In the language of physics, one looks for a vector space together with a collection of operators on satisfying some fixed set of commutation relations, such as the relations satisfied by the angular momentum operators.

<span class="mw-page-title-main">Quantum group</span> Algebraic construct of interest in theoretical physics

In mathematics and theoretical physics, the term quantum group denotes one of a few different kinds of noncommutative algebras with additional structure. These include Drinfeld–Jimbo type quantum groups, compact matrix quantum groups, and bicrossproduct quantum groups. Despite their name, they do not themselves have a natural group structure, though they are in some sense 'close' to a group.

In mathematics, the universal enveloping algebra of a Lie algebra is the unital associative algebra whose representations correspond precisely to the representations of that Lie algebra.

<span class="mw-page-title-main">Killing form</span> Mathematical concept

In mathematics, the Killing form, named after Wilhelm Killing, is a symmetric bilinear form that plays a basic role in the theories of Lie groups and Lie algebras. Cartan's criteria show that Killing form has a close relationship to the semisimplicity of the Lie algebras.

<span class="mw-page-title-main">Semisimple Lie algebra</span> Direct sum of simple Lie algebras

In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras.

In mathematics, an affine Lie algebra is an infinite-dimensional Lie algebra that is constructed in a canonical fashion out of a finite-dimensional simple Lie algebra. Given an affine Lie algebra, one can also form the associated affine Kac-Moody algebra, as described below. From a purely mathematical point of view, affine Lie algebras are interesting because their representation theory, like representation theory of finite-dimensional semisimple Lie algebras, is much better understood than that of general Kac–Moody algebras. As observed by Victor Kac, the character formula for representations of affine Lie algebras implies certain combinatorial identities, the Macdonald identities.

<span class="mw-page-title-main">Hermitian symmetric space</span> Manifold with inversion symmetry

In mathematics, a Hermitian symmetric space is a Hermitian manifold which at every point has an inversion symmetry preserving the Hermitian structure. First studied by Élie Cartan, they form a natural generalization of the notion of Riemannian symmetric space from real manifolds to complex manifolds.

In mathematics, a Lie bialgebra is the Lie-theoretic case of a bialgebra: it is a set with a Lie algebra and a Lie coalgebra structure which are compatible.

In mathematics, the Harish-Chandra isomorphism, introduced by Harish-Chandra , is an isomorphism of commutative rings constructed in the theory of Lie algebras. The isomorphism maps the center of the universal enveloping algebra of a reductive Lie algebra to the elements of the symmetric algebra of a Cartan subalgebra that are invariant under the Weyl group .

In algebra, a triple system is a vector space V over a field F together with a F-trilinear map

<span class="mw-page-title-main">Real form (Lie theory)</span>

In mathematics, the notion of a real form relates objects defined over the field of real and complex numbers. A real Lie algebra g0 is called a real form of a complex Lie algebra g if g is the complexification of g0:

In algebra, the Nichols algebra of a braided vector space is a braided Hopf algebra which is denoted by and named after the mathematician Warren Nichols. It takes the role of quantum Borel part of a pointed Hopf algebra such as a quantum groups and their well known finite-dimensional truncations. Nichols algebras can immediately be used to write down new such quantum groups by using the Radford biproduct.

<span class="mw-page-title-main">Borel–de Siebenthal theory</span>

In mathematics, Borel–de Siebenthal theory describes the closed connected subgroups of a compact Lie group that have maximal rank, i.e. contain a maximal torus. It is named after the Swiss mathematicians Armand Borel and Jean de Siebenthal who developed the theory in 1949. Each such subgroup is the identity component of the centralizer of its center. They can be described recursively in terms of the associated root system of the group. The subgroups for which the corresponding homogeneous space has an invariant complex structure correspond to parabolic subgroups in the complexification of the compact Lie group, a reductive algebraic group.

<span class="mw-page-title-main">Complexification (Lie group)</span> Universal construction of a complex Lie group from a real Lie group

In mathematics, the complexification or universal complexification of a real Lie group is given by a continuous homomorphism of the group into a complex Lie group with the universal property that every continuous homomorphism of the original group into another complex Lie group extends compatibly to a complex analytic homomorphism between the complex Lie groups. The complexification, which always exists, is unique up to unique isomorphism. Its Lie algebra is a quotient of the complexification of the Lie algebra of the original group. They are isomorphic if the original group has a quotient by a discrete normal subgroup which is linear.

In mathematics, symmetric cones, sometimes called domains of positivity, are open convex self-dual cones in Euclidean space which have a transitive group of symmetries, i.e. invertible operators that take the cone onto itself. By the Koecher–Vinberg theorem these correspond to the cone of squares in finite-dimensional real Euclidean Jordan algebras, originally studied and classified by Jordan, von Neumann & Wigner (1934). The tube domain associated with a symmetric cone is a noncompact Hermitian symmetric space of tube type. All the algebraic and geometric structures associated with the symmetric space can be expressed naturally in terms of the Jordan algebra. The other irreducible Hermitian symmetric spaces of noncompact type correspond to Siegel domains of the second kind. These can be described in terms of more complicated structures called Jordan triple systems, which generalize Jordan algebras without identity.

In mathematics, specifically in representation theory, a Borel subalgebra of a Lie algebra is a maximal solvable subalgebra. The notion is named after Armand Borel.

<span class="mw-page-title-main">Glossary of Lie groups and Lie algebras</span>

This is a glossary for the terminology applied in the mathematical theories of Lie groups and Lie algebras. For the topics in the representation theory of Lie groups and Lie algebras, see Glossary of representation theory. Because of the lack of other options, the glossary also includes some generalizations such as quantum group.

References

  1. Drinfeld, V. G. (1987). Gleason, Andrew (ed.). "Quantum groups" (PDF). Proceedings of the International Congress of Mathematicians 1986. 1. Berkeley: American Mathematical Society: 798–820. ISBN   978-0-8218-0110-9. MR   0934283.
  2. Delorme, Patrick (2001-12-01). "Classification des triples de Manin pour les algèbres de Lie réductives complexes: Avec un appendice de Guillaume Macey". Journal of Algebra . 246 (1): 97–174. arXiv: math/0003123 . doi:10.1006/jabr.2001.8887. ISSN   0021-8693. MR   1872615.