Mark and space

Last updated

Mark and space are terms used in telecommunications to describe two different signal states of a communications signal, generally at the physical layer of a communications system. The terms derive from the early days of the electric telegraph system, where the marking state would cause a mark to be output on paper, and the spacing state would create no mark.

7-bit Asynchronous Data Communication surrounded by start, parity and end elements including one "0" (spacing) start element and one "1" (marking) stop element MIL-STD-188-100 char struct for async comms 1972-11-15.svg
7-bit Asynchronous Data Communication surrounded by start, parity and end elements including one "0" (spacing) start element and one "1" (marking) stop element
Diagram of RS-232 signalling for an uppercase ASCII "K" character (0x4b) with 1 start bit, 8 data bits, 1 stop bit. Mark and Space depict negative and positive voltage levels. Rs232 oscilloscope trace.svg
Diagram of RS-232 signalling for an uppercase ASCII "K" character (0x4b) with 1 start bit, 8 data bits, 1 stop bit. Mark and Space depict negative and positive voltage levels.

The terms would continue to be used in systems such as RS-232, with similar conventions, that "mark" would be encoded by a negative voltage (or current flow), and "space" by a positive voltage (or no current flow). [2] In such systems, the line is typically left in the "mark" state when idle. [3]

"Mark" is generally identified with the binary digit "1" and "space" with the binary digit "0". [2]

See also

Related Research Articles

The bit is the most basic unit of information in computing and digital communication. The name is a portmanteau of binary digit. The bit represents a logical state with one of two possible values. These values are most commonly represented as either "1" or "0", but other representations such as true/false, yes/no, on/off, or +/ are also widely used.

<span class="mw-page-title-main">Digital data</span> Discrete, discontinuous representation of information

Digital data, in information theory and information systems, is information represented as a string of discrete symbols, each of which can take on one of only a finite number of values from some alphabet, such as letters or digits. An example is a text document, which consists of a string of alphanumeric characters. The most common form of digital data in modern information systems is binary data, which is represented by a string of binary digits (bits) each of which can have one of two values, either 0 or 1.

<span class="mw-page-title-main">Electricity</span> Phenomena related to electric charge

Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwell's equations. Common phenomena are related to electricity, including lightning, static electricity, electric heating, electric discharges and many others.

<span class="mw-page-title-main">Electronics</span> Branch of physics and electrical engineering

Electronics is a scientific and engineering discipline that studies and applies the principles of physics to design, create, and operate devices that manipulate electrons and other electrically charged particles. It is a subfield of physics and electrical engineering which uses active devices such as transistors, diodes, and integrated circuits to control and amplify the flow of electric current and to convert it from one form to another, such as from alternating current (AC) to direct current (DC) or from analog signals to digital signals.

<span class="mw-page-title-main">RS-232</span> Standard for serial communication

In telecommunications, RS-232 or Recommended Standard 232 is a standard originally introduced in 1960 for serial communication transmission of data. It formally defines signals connecting between a DTE such as a computer terminal or PC, and a DCE, such as a modem. The standard defines the electrical characteristics and timing of signals, the meaning of signals, and the physical size and pinout of connectors. The current version of the standard is TIA-232-F Interface Between Data Terminal Equipment and Data Circuit-Terminating Equipment Employing Serial Binary Data Interchange, issued in 1997.

<span class="mw-page-title-main">Analog-to-digital converter</span> System that converts an analog signal into a digital signal

In electronics, an analog-to-digital converter is a system that converts an analog signal, such as a sound picked up by a microphone or light entering a digital camera, into a digital signal. An ADC may also provide an isolated measurement such as an electronic device that converts an analog input voltage or current to a digital number representing the magnitude of the voltage or current. Typically the digital output is a two's complement binary number that is proportional to the input, but there are other possibilities.

<span class="mw-page-title-main">Multimeter</span> Electronic measuring instrument that combines several measurement functions in one unit

A multimeter is a measuring instrument that can measure multiple electrical properties. A typical multimeter can measure voltage, resistance, and current, in which case can be used as a voltmeter, ohmmeter, and ammeter. Some feature the measurement of additional properties such as temperature and capacitance.

In telecommunications and electronics, baud is a common unit of measurement of symbol rate, which is one of the components that determine the speed of communication over a data channel.

<span class="mw-page-title-main">Duty cycle</span> Activity fraction of a periodic system

A duty cycle or power cycle is the fraction of one period in which a signal or system is active. Duty cycle is commonly expressed as a percentage or a ratio. A period is the time it takes for a signal to complete an on-and-off cycle. As a formula, a duty cycle (%) may be expressed as:

<span class="mw-page-title-main">Non-return-to-zero</span> Telecommunications coding technique

In telecommunications, a non-return-to-zero (NRZ) line code is a binary code in which ones are represented by one significant condition, usually a positive voltage, while zeros are represented by some other significant condition, usually a negative voltage, with no other neutral or rest condition.

<span class="mw-page-title-main">Ohm's law</span> Law of electrical current and voltage

Ohm's law states that the electric current through a conductor between two points is directly proportional to the voltage across the two points. Introducing the constant of proportionality, the resistance, one arrives at the three mathematical equations used to describe this relationship:

A ternary numeral system has three as its base. Analogous to a bit, a ternary digit is a trit. One trit is equivalent to log2 3 bits of information.

<span class="mw-page-title-main">Signal</span> Varying physical quantity that conveys information

Signal refers to both the process and the result of transmission of data over some media accomplished by embedding some variation. Signals are important in multiple subject fields including signal processing, information theory and biology.

RS-485, also known as TIA-485(-A) or EIA-485, is a standard, originally introduced in 1983, defining the electrical characteristics of drivers and receivers for use in serial communications systems. Electrical signaling is balanced, and multipoint systems are supported. The standard is jointly published by the Telecommunications Industry Association and Electronic Industries Alliance (TIA/EIA). Digital communications networks implementing the standard can be used effectively over long distances and in electrically noisy environments. Multiple receivers may be connected to such a network in a linear, multidrop bus. These characteristics make RS-485 useful in industrial control systems and similar applications.

<span class="mw-page-title-main">Analogue electronics</span> Electronic systems with a continuously variable signal

Analogue electronics are electronic systems with a continuously variable signal, in contrast to digital electronics where signals usually take only two levels. The term analogue describes the proportional relationship between a signal and a voltage or current that represents the signal. The word analogue is derived from the Greek word ανάλογος analogos meaning proportional.

In telecommunication technology, a Barker code or Barker sequence is a finite sequence of digital values with the ideal autocorrelation property. It is used as a synchronising pattern between the sender and receiver of a stream of bits.

<span class="mw-page-title-main">Capacitor</span> Passive two-terminal electronic component that stores electrical energy in an electric field

In electrical engineering, a capacitor is a device that stores electrical energy by accumulating electric charges on two closely spaced surfaces that are insulated from each other. The capacitor was originally known as the condenser, a term still encountered in a few compound names, such as the condenser microphone. It is a passive electronic component with two terminals.

In digital circuits, a logic level is one of a finite number of states that a digital signal can inhabit. Logic levels are usually represented by the voltage difference between the signal and ground, although other standards exist. The range of voltage levels that represent each state depends on the logic family being used. A logic-level shifter can be used to allow compatibility between different circuits.

<span class="mw-page-title-main">Digital signal</span> Signal used to represent data as a sequence of discrete values

A digital signal is a signal that represents data as a sequence of discrete values; at any given time it can only take on, at most, one of a finite number of values. This contrasts with an analog signal, which represents continuous values; at any given time it represents a real number within a continuous range of values.

<span class="mw-page-title-main">Telecommunications</span> Transmission of information electromagnetically

Telecommunication, often used in its plural form or abbreviated as telecom, is the transmission of information with an immediacy comparable to face-to-face communication. As such, slow communications technologies like postal mail and pneumatic tubes are excluded from the definition. Many transmission media have been used for telecommunications throughout history, from smoke signals, beacons, semaphore telegraphs, signal flags, and optical heliographs to wires and empty space made to carry electromagnetic signals. These paths of transmission may be divided into communication channels for multiplexing, allowing for a single medium to transmit several concurrent communication sessions. Several methods of long-distance communication before the modern era used sounds like coded drumbeats, the blowing of horns, and whistles. Long-distance technologies invented during the 20th and 21st centuries generally use electric power, and include the telegraph, telephone, television, and radio.

References

  1. MIL-STD-188-100, Pg. B-8, Fig. 3, 1972.
  2. 1 2 Freeman, Roger L. (2004-06-11). Telecommunication System Engineering. John Wiley & Sons. ISBN   978-0-471-45133-4.
  3. Martin, James; Martin, James Thomas; S.J, James Martin (1976). Telecommunications and the Computer. Prentice Hall Professional. ISBN   978-0-13-902494-8.