Materially engineered artificial pollinators

Last updated

Materially engineered artificial pollinators are experimental radiowave-controlled micro-drones that use ionic liquid gels for artificial pollination without living insects. [1] [2] [3] [4] [5] [6] [7] [8]

Contents

The researchers who are developing this technology published their findings in the 9 February issue of the journal Chem [1] [9] and hope that their research will help counter the problems caused by declining honeybee populations, meeting the modern agricultural demands of colonies and benefit farmers. [1]

Early history

In 2007 Eijiro Miyako, chemist at the National Institute of Advanced Industrial Science and Technology (AIST) Nanomaterial Research Institute, worked to make liquids that could be used as electrical conductors. One of his attempts generated a sticky gel, which was at the time considered a failure. After 8 years this gel was found during a lab cleanup. The researchers were astonished that it had not degraded, retaining its viscosity. Svetlana Chechetka, colleague of Miyako, notes that "conventional gels are mainly made of water and can't be used for a long time, so we decided to use this material for research". Inspired by concerns over honeybees and news reports on robotic insects, Miyako decided to investigate whether the gel could be used to pick up pollen. Miyako collected ants from near his institute, placed a droplet of the gel on some of them and let them wander around for a while in a box of tulips. The ants with the gel on them had more pollen than those without. Separate feet experiments with houseflies discovered a different phenomenon: the gel produces a camouflage effect, changing colour in response to various light sources, which could be used to help artificial pollinators avoid predators. [1]

Drone tests

After these early insect successes, Miyako wanted to move on to drones. He settled on a smaller model that could fly around through flower fields the way a bee does, and simulated the bee's hairy skin by using horse hair coated with the gel. [1] The team flew the 4 × 4 cm sized [2] mechanical bees over pink-leaved Japanese lilies (Lilium japonicum), letting them absorb the pollen. The drones were then flown to a second flower, where grains were deposited to artificially pollinate the plants, causing them to begin the process of generating seeds. This did not occur with control drones (without the gel and hair). [1]

Miyako states that "the findings, which will have applications for agriculture and robotics, among others, could lead to the development of artificial pollinators and help counter the problems caused by declining honeybee populations", that they "believe that robotic pollinators could be trained to learn pollination paths using global positioning systems and artificial intelligence" [1] and that the concept demonstrated "should be expandable to other research areas, including chemical composites, agriculture, biomimetic science, and robotics". [9]

See also

Related Research Articles

<span class="mw-page-title-main">Bee</span> Clade of insects

Bees are winged insects closely related to wasps and ants, known for their roles in pollination and, in the case of the best-known bee species, the western honey bee, for producing honey. Bees are a monophyletic lineage within the superfamily Apoidea. They are currently considered a clade, called Anthophila. There are over 20,000 known species of bees in seven recognized biological families. Some species – including honey bees, bumblebees, and stingless bees – live socially in colonies while most species (>90%) – including mason bees, carpenter bees, leafcutter bees, and sweat bees – are solitary.

<span class="mw-page-title-main">Honey bee</span> Colonial flying insect of genus Apis

A honey bee is a eusocial flying insect within the genus Apis of the bee clade, all native to mainland Afro-Eurasia. After bees spread naturally throughout Africa and Eurasia, humans became responsible for the current cosmopolitan distribution of honey bees, introducing multiple subspecies into South America, North America, and Australia.

<span class="mw-page-title-main">Pollinator</span> Animal that moves pollen from the male anther of a flower to the female stigma

A pollinator is an animal that moves pollen from the male anther of a flower to the female stigma of a flower. This helps to bring about fertilization of the ovules in the flower by the male gametes from the pollen grains.

<span class="mw-page-title-main">Bumblebee</span> Genus of insect

A bumblebee is any of over 250 species in the genus Bombus, part of Apidae, one of the bee families. This genus is the only extant group in the tribe Bombini, though a few extinct related genera are known from fossils. They are found primarily in higher altitudes or latitudes in the Northern Hemisphere, although they are also found in South America, where a few lowland tropical species have been identified. European bumblebees have also been introduced to New Zealand and Tasmania. Female bumblebees can sting repeatedly, but generally ignore humans and other animals.

<span class="mw-page-title-main">Pollination</span> Biological process occurring in plants

Pollination is the transfer of pollen from an anther of a plant to the stigma of a plant, later enabling fertilisation and the production of seeds, most often by an animal or by wind. Pollinating agents can be animals such as insects, birds, and bats; water; wind; and even plants themselves, when self-pollination occurs within a closed flower. Pollination often occurs within a species. When pollination occurs between species, it can produce hybrid offspring in nature and in plant breeding work.

<span class="mw-page-title-main">Fruit tree pollination</span>

Pollination of fruit trees is required to produce seeds with surrounding fruit. It is the process of moving pollen from the anther to the stigma, either in the same flower or in another flower. Some tree species, including many fruit trees, do not produce fruit from self-pollination, so pollinizer trees are planted in orchards.

<span class="mw-page-title-main">Pollination management</span> Horticultural practices to enhance pollination

Pollination management is the horticultural practices that accomplish or enhance pollination of a crop, to improve yield or quality, by understanding of the particular crop's pollination needs, and by knowledgeable management of pollenizers, pollinators, and pollination conditions.

<span class="mw-page-title-main">Buzz pollination</span>

Buzz pollination or sonication is a technique used by some bees, such as solitary bees, to release pollen which is more or less firmly held by the anthers. The anthers of buzz-pollinated plant species are typically tubular, with an opening at only one end, and the pollen inside is smooth-grained and firmly attached. With self-fertile plants such as tomatoes, wind may be sufficient to shake loose the pollen through pores in the anther and accomplish pollination. Visits by bees may also shake loose some pollen, but more efficient pollination of those plants is accomplished by a few insect species who specialize in sonication or buzz pollination.

<i>Varroa destructor</i> Species of mite

Varroa destructor, the Varroa mite is an external parasitic mite that attacks and feeds on the honey bees Apis mellifera and Apis cerana. The disease caused by the mite in this genus is called varroosis.

Hive management in beekeeping refers to intervention techniques that a beekeeper may perform to ensure hive survival and to maximize hive production. Hive management techniques vary widely depending on the objectives.

<i>Apis florea</i> Species of bee

The dwarf honey bee, Apis florea, is one of two species of small, wild honey bees of southern and southeastern Asia. It has a much wider distribution than its sister species, Apis andreniformis. First identified in the late 18th century, Apis florea is unique for its morphology, foraging behavior and defensive mechanisms like making a piping noise. Apis florea have open nests and small colonies, which makes them more susceptible to predation than cavity nesters with large numbers of defensive workers. These honey bees are important pollinators and therefore commodified in countries like Cambodia.

<span class="mw-page-title-main">Hand-pollination</span> Mechanical pollination technique

Hand pollination, also known as mechanical pollination is a technique that can be used to pollinate plants when natural or open pollination is either undesirable or insufficient.

<span class="mw-page-title-main">Palynivore</span> Group of herbivorous animals

In zoology, a palynivore /pəˈlɪnəvɔːɹ/, meaning "pollen eater" is an herbivorous animal which selectively eats the nutrient-rich pollen produced by angiosperms and gymnosperms. Most true palynivores are insects or mites. The category in its strictest application includes most bees, and a few kinds of wasps, as pollen is often the only solid food consumed by all life stages in these insects. However, the category can be extended to include more diverse species. For example, palynivorous mites and thrips typically feed on the liquid content of the pollen grains without actually consuming the exine, or the solid portion of the grain. Additionally, the list is expanded greatly if one takes into consideration species where either the larval or adult stage feeds on pollen, but not both. There are other wasps which are in this category, as well as many beetles, flies, butterflies, and moths. One such example of a bee species that only consumes pollen in its larval stage is the Apis mellifera carnica. There is a vast array of insects that will feed opportunistically on pollen, as will various birds, orb-weaving spiders and other nectarivores.

<span class="mw-page-title-main">Western honey bee</span> European honey bee

The western honey bee or European honey bee is the most common of the 7–12 species of honey bees worldwide. The genus name Apis is Latin for "bee", and mellifera is the Latin for "honey-bearing" or "honey carrying", referring to the species' production of honey.

<span class="mw-page-title-main">Colony collapse disorder</span> Aspect of apiculture

Colony collapse disorder (CCD) is an abnormal phenomenon that occurs when the majority of worker bees in a honey bee colony disappear, leaving behind a queen, plenty of food, and a few nurse bees to care for the remaining immature bees. While such disappearances have occurred sporadically throughout the history of apiculture, and have been known by various names, the syndrome was renamed colony collapse disorder in early 2007 in conjunction with a drastic rise in reports of disappearances of western honey bee colonies in North America. Beekeepers in most European countries had observed a similar phenomenon since 1998, especially in Southern and Western Europe; the Northern Ireland Assembly received reports of a decline greater than 50%. The phenomenon became more global when it affected some Asian and African countries as well.

<span class="mw-page-title-main">RoboBee</span> Tiny robot capable of flight

RoboBee is a tiny robot capable of partially untethered flight, developed by a research robotics team at Harvard University. The culmination of twelve years of research, RoboBee solved two key technical challenges of micro-robotics. Engineers invented a process inspired by pop-up books that allowed them to build on a sub-millimeter scale precisely and efficiently. To achieve flight, they created artificial muscles capable of beating the wings 120 times per second.

<i>Megachile campanulae</i> Species of bee

Megachile campanulae, known as the bellflower resin bee, is a species of bee in the family Megachilidae. Described in 1903, these solitary bees are native to eastern North America. Studies in 2013 placed them among the first insect species to use synthetic materials for making nests. They are considered mason bees, which is a common descriptor of bees in several families, including Megachilidae. Within the genus Megachile, frequently also referred to as leafcutter bees, M. campanulae is a member of the subgenus Chelostomoides, which do not construct nests from cut leaves, but rather from plant resins and other materials. Females lay eggs in nests constructed with individual cell compartments for each egg. Once hatched, the eggs progress through larval stages and subsequently will overwinter as pupae. The bees are susceptible to parasitism from several other bee species, which act as brood parasites. They are medium-sized bees and the female adults are typically larger than the males. They are important pollinators of numerous native plant species throughout their range.

<span class="mw-page-title-main">Pollen DNA barcoding</span> Process of identifying pollen donor plant species

Pollen DNA barcoding is the process of identifying pollen donor plant species through the amplification and sequencing of specific, conserved regions of plant DNA. Being able to accurately identify pollen has a wide range of applications though it has been difficult in the past due to the limitations of microscopic identification of pollen.

Juliet Osborne is an entomologist and ecologist in the UK. She is professor of applied ecology at the University of Exeter and she looks at the health of social insects and how they pollinate plants.

References

  1. 1 2 3 4 5 6 7 "Sticky gels turn insect-sized drones into artificial pollinators" . Retrieved 11 February 2017.
  2. 1 2 Potenza, Alessandra (9 February 2017). "Bee optimistic: this drone can still pollinate plants even if all the bees die". The Verge. Retrieved 11 February 2017.
  3. "Robotic bee could help pollinate crops as real bees decline". New Scientist. Retrieved 11 February 2017.
  4. "Could tiny robots be the answer to the honeybee crisis?". ABC News. 10 February 2017. Retrieved 11 February 2017.
  5. Khan, Amina (9 February 2017). "As bee populations dwindle, robot bees may pick up some of their pollination slack". Los Angeles Times. Retrieved 11 February 2017.
  6. Regalado, Antonio. "Researchers just used a drone to pollinate a flower". MIT Technology Review. Retrieved 11 February 2017.
  7. "Japanische Forscher entwickeln Bienen-Drohnen als Bestäuber" (in German). 11 February 2017. Retrieved 11 February 2017.
  8. "Sticky gels turn insect-sized drones into artificial pollinators" . Retrieved 11 February 2017.
  9. 1 2 Chechetka, Svetlana A.; Yu, Yue; Tange, Masayoshi; Miyako, Eijiro (February 2017). "Materially Engineered Artificial Pollinators". Chem. 2 (2): 224–239. doi: 10.1016/j.chempr.2017.01.008 .