Technological fix

Last updated
Renewable energy is one primary example of a technological fix, as it has been designed to combat the issues associated with climate change. Energiaberriztagarriak.jpg
Renewable energy is one primary example of a technological fix, as it has been designed to combat the issues associated with climate change.

A technological fix, technical fix, technological shortcut or (techno-)solutionism refers to attempts to use engineering or technology to solve a problem (often created by earlier technological interventions). [1]

Contents

Some references define technological fix as an "attempt to repair the harm of a technology by modification of the system", that might involve modification of the machine and/or modification of the procedures for operating and maintaining it.

Technological fixes are inevitable in modern technology. It has been observed that many technologies, although invented and developed to solve certain perceived problems, often create other problems in the process, known as externalities. In other words, there would be modification of the basic hardware, modification of techniques and procedures, or both. [2]

The technological fix is the idea that all problems can find solutions in better and new technologies. It now is used as a dismissive phrase to describe cheap, quick fixes by using inappropriate technologies; these fixes often create more problems than they solve or give people a sense that they have solved the problem. [3]

Contemporary context

In the contemporary context, technological fix is sometimes used to refer to the idea of using data and intelligent algorithms to supplement and improve human decision making in hope that this would result in ameliorating the bigger problem. One critic, Evgeny Morozov defines this as "Recasting all complex social situations either as neat problems with definite, computable solutions or as transparent and self-evident processes that can be easily optimized – if only the right algorithms are in place." [4] Morozov has defined this perspective as an ideology that is especially prevalent in Silicon Valley, and defined it as "solutionism". While some criticizes this approach to the issues of today as detrimental to efforts to truly solve these problems, opponents finds merits in such approach to technological improvement of our society as complements to existing activists and policy efforts. [5]

An example of the criticism is how policy makers may be tempted to think that installing smart energy monitors would help people conserve energy better, thus improving global warming, rather than focusing on the arduous process of passing laws to tax carbon, etc. Another example is the use of technological tools alone to solve complex sociopolitical crises such as pandemics, or the belief that such crises can be solved through the integration of technical fixes alone.

Algorithms

The definition of algorithms according to the Oxford Languages dictionary is “a process or set of rules to be followed in calculations or other problem-solving operations, especially by a computer.” Algorithms are increasingly used as technological fixes in modern society to replace tasks or decision-making by humans, often to reduce labor costs, increase efficiency, or reduce human bias. These solutions serve as a “quick and flawless way to solve complex real world problems… but technology isn’t magic”. [6] The use of algorithms as fixes, however, are not addressing the root causes of these problems. Instead, algorithms are more often being used as “band-aid” solutions that may provide temporary relief, but do not ameliorate the issue for good. Additionally, these fixes tend to come with their own problems, some of which are even more harmful than the original problem.

One example of algorithms as a technological fix for increasing public safety is face recognition software, which has been used by the San Diego County police department [7] and the Pittsburgh police department, [8] among other government security organizations. Face recognition is an example of algorithmic technology that is viewed as potentially having many benefits for its users, such as verifying one’s identity in security systems. This system uses biometrics to quantify and map out distinguishing facial features. [9] However, face recognition as a technological fix for safety and security concerns comes with issues of privacy and discrimination. In the case of face recognition technology being used by the San Diego County police department, Black men were being falsely accused of crimes due to being mistakenly identified by the software. [7] Additionally, San Diego police used the face recognition software on African Americans up to twice as often than on other people. [7] The cases of discrimination perpetuated by the face recognition tool led to a three-year ban on its use starting in 2019. Instead of addressing systemic and historically embedded issues of inequalities among racial groups, the face recognition technology was used to perpetuate discrimination and support police in doing their jobs unfairly and inaccurately.

Another example of algorithms being used as a technological fix is tools to automate decision-making, such as in the cases of Oregon’s Child Welfare Risk Tool [10] and the Pittsburgh Allegheny County Family Screening Tool (AFST). [11] In these cases, algorithms replacing humans as decision makers have been used to fix the underlying issues of the cost of employees to make child welfare case decisions and to eliminate human biases in the decision-making process. However, researchers at Carnegie Mellon University found that the tool discriminates against Black families, who are statistically underserved and have historically lived in lower-income areas. [11] This historical data caused by systemic disparities causes the algorithm to flag a greater percentage of children of Black families as high risk than children of White families. By using data based on historical biases, the automated decisions further fuel racial disparities, and actually accomplish the opposite of the intended outcomes.

Climate change

The technological fix for climate change is an example of the use of technology to restore the environment. This can be seen through various different strategies such as: geo-engineering and renewable energy.

Geo-engineering

Geo-engineering is referred as "the artificial modification of Earth's climate systems through two primary ideologies: Solar Radiation Management (SRM) and Carbon Dioxide Removal (CDR)".[ citation needed ] Different schemes, projects and technologies have been designed to tackle the effects of climate change, usually by removing CO2 from the air as seen by Klaus Lackner's invention of a CO2 prototype, or by limiting the amount of sunlight that reaches the Earth's surface, by space mirrors. However, "critics by contrast claim that geoengineering isn't realistic – and may be a distraction from reducing emissions. [12] " It has been argued that geo-engineering is an adaptation to global warming. It allows TNC's, humans and governments to avoid facing the facts that global warming is a crisis that needs to be dealt with head-on by reducing emissions and implementing green technologies, rather than developing ways to control the environment and ultimately allow Greenhouse Gases to continue to be released into the atmosphere.

Externalities

Externalities refer to the unforeseen or unintended consequences of technology. It is evident that everything new and innovative can potentially have negative effects, especially if it is a new area of development. Although technologies are invented and developed to solve certain perceived problems, they often create other problems in the process.

Algorithms

Evgeny Morozov, writer and researcher on social implications of technology, has said, “A new problem-solving infrastructure is new; new types of solutions become possible that weren’t possible 15 years ago”. [6] The issue with the use of algorithms as technological fixes is that they shouldn’t be applied as a one-size-fits-all solution because each problem comes with its own context and implications. While algorithms can offer solutions, it can also amplify discriminatory harms, especially to already marginalized groups. These externalities include racial bias, gender bias, and disability discrimination.

Oftentimes, algorithms are implemented into systems without a clear understanding of whether or not it is an appropriate solution to a problem. In Understanding perception of algorithmic decisions: Fairness, trust, and emotion in response to algorithmic management, Min Kyung Lee writes, “...the problem is that industries often incorporate technology whose performance and effectiveness are not yet proven, without careful validation and reflection.” Algorithms may offer immediate relief to problems or an optimistic outlook to the current issues at hand, but they can also create more problems that require even more complex solutions. Sometimes, the use of algorithms as a technological fix leaves us asking, “Did anyone ask for this?” and wondering whether the benefits outweigh the harms. These tradeoffs should be rigorously assessed in order to determine if an algorithm is truly the most appropriate solution.

DDT

DDT was initially use by the Military in World War II to control a range of different illnesses, varying from Malaria to the bubonic plague and body lice. [13] Due to the efficiency of DDT, it was soon adopted as a farm pesticide to help maximise crop yields to consequently cope with the rising populations food demands post WWII. This pesticide proved to be extremely effective in killing bugs and animals on crops, and was often referred as the "wonder-chemical". [14] However, despite being banned for over forty years, we are still facing the externalities of this technology. [14] It was found that DDT had major health impacts on both humans and animals. It was found that DDT accumulated within the fatty cells of both humans and animals and therefore highlights that technological fixes have their negatives as well as positives. [14]

DDT being sprayed (1958, The United States' National Malaria Eradication Program) DDT spray 1958.jpg
DDT being sprayed (1958, The United States' National Malaria Eradication Program)

Humans

  • Breast & other cancers [14]
  • Male infertility [14]
  • Miscarriages & low birth weight [14]
  • Developmental delay [14]
  • Nervous system & liver damage [14] [15]

Animals

  • DDT is toxic to birds when eaten. [16]
  • Decreases the reproductive rate of birds by causing eggshell thinning and embryo deaths. [15]
  • Highly toxic to aquatic animals. DDT affects various systems in aquatic animals including the heart and brain. [15]
  • DDT moderately toxic to amphibians like frogs, toads, and salamanders. Immature amphibians are more sensitive to the effects of DDT than adults. [15]
Automobile Dorothea Lange atop automobile in California (restored).jpg
Automobile

Global warming

Global warming can be a natural phenomenon that occurs in long (geologic) cycles. However, it has been found that the release of greenhouse gases through industry and traffic causes the earth to warm. This is causing externalities on the environment, such as melting icecaps, shifting biomes, and extinction of many aquatic species through ocean acidification and changing ocean temperatures. [17]

Automobiles

Automobiles with internal combustion engines have revolutionised civilisation and technology. [18] However, whilst the technology was new and innovative, helping to connect places through the ability of transport, it was not recognised at the time that burning fossil fuels, such as coal and oil, inside the engines would release pollutants. This is an explicit example of an externality caused by a technological fix, as the problems caused from the development of the technology was not recognised at the time.

Different types of technological fixes

High-tech megaprojects

High-tech megaprojects are large scale and require huge sums of investment and revenue to be created. Examples of these high technologies are dams, nuclear power plants, and airports. They usually cause externalities on other factors such as the environment, are highly expensive, and are top-down governmental plans.

The Three Gorges Dam is a hydroelectric dam. Three gorges dam locks view from vantage point.jpg
The Three Gorges Dam is a hydroelectric dam.

Three Gorges Dam

The Three Gorges Dam is an example of a high-tech technological fix. The creation of the multi-purpose navigation hydropower and flood control scheme was designed to fix the issues with flooding whilst providing efficient, clean renewable hydro-electric power in China. The Three Gorges Dam is the world's largest power station in terms of installed capacity (22,500  MW). The dam is the largest operating hydroelectric facility in terms of annual energy generation, generating 83.7 TWh in 2013 and 98.8 TWh in 2014, while the annual energy generation of the Itaipú Dam in Brazil and Paraguay was 98.6 TWh in 2013 and 87.8 in 2014. [19] [20] [21] It was estimated to have cost over £25 billion. [22] There have been many externalities from this technology, such as the extinction of the Chinese River Dolphin, [22] an increase in pollution, as the river can no longer 'flush' itself, and over 4 million locals being displaced in the area. [22]

Intermediate technology

Rainwater harvesting Rooftop rainwater harvesting.jpg
Rainwater harvesting

Is usually small-scale and cheap technologies that are usually seen in developing countries. The capital to build and create these technologies are usually low, yet labour is high. [23] Local expertise can be used to maintain these technologies making them very quick and effective to build and repair. An example of an intermediate technology can be seen by water wells, rain barrels and pumpkin tanks.

Appropriate technologies

Technology that suits the level of income, skills and needs of the people. [24] Therefore, this factor encompasses both high and low technologies.

An example of this can be seen by developing countries that implement technologies that suit their expertise, such as rain barrels and hand pumps. These technologies are low costing and can be maintained by local skills, making them affordable and efficient. [24] However, to implement rain barrels in a developed country would not be appropriate, as it would not suit the technological advancement apparent in these countries. Therefore, appropriate technological fixes take into consideration the level of development within a country before implementing them.

Concerns

Michael and Joyce Huesemann caution against the hubris of large-scale techno-fixes [25] In the book Techno-Fix: Why Technology Won't Save Us Or the Environment they show why negative unintended consequences of science and technology are inherently unavoidable and unpredictable, why counter-technologies or techno-fixes are no lasting solutions, and why modern technology in current context does not promote sustainability but instead collapse. [26]

Naomi Klein is a prominent opponent of the view that simply technological fixes will solve our problems. She explained her concerns in her book This Changes Everything: Capitalism vs. the Climate [27] [28] and states that technical fixes for climate change such as geoengineering bring significant risks as "we simply don't know enough about the Earth system to be able to re-engineer it safely". According to her the proposed technique of dimming the rays of the sun with sulphate-spraying helium balloons in order to mimic the cooling effect on the atmosphere of large volcanic eruptions for instance is highly dangerous and such schemes will surely be attempted if abrupt climate change gets seriously under way. [27] Such concerns are explored in their complexity in Elizabeth Kolbert's Under a White Sky . [29]

Various experts and environmental groups have also come forward with their concerns over views and approaches that look for techno fixes as solutions and warn that those would be "misguided, unjust, profoundly arrogant and endlessly dangerous" approaches [30] as well as over the prospect of a technological 'fix' for global warming, however impractical, causing lessened political pressure for a real solution. [31]

See also

Related Research Articles

<span class="mw-page-title-main">Arable land</span> Land capable of being ploughed and used to grow crops

Arable land is any land capable of being ploughed and used to grow crops. Alternatively, for the purposes of agricultural statistics, the term often has a more precise definition:

Arable land is the land under temporary agricultural crops, temporary meadows for mowing or pasture, land under market and kitchen gardens and land temporarily fallow. The abandoned land resulting from shifting cultivation is not included in this category. Data for 'Arable land' are not meant to indicate the amount of land that is potentially cultivable.

<span class="mw-page-title-main">Hydroponics</span> Growing plants without soil using nutrients in water

Hydroponics is a type of horticulture and a subset of hydroculture which involves growing plants, usually crops or medicinal plants, without soil, by using water-based mineral nutrient solutions. Terrestrial or aquatic plants may grow with their roots exposed to the nutritious liquid or the roots may be mechanically supported by an inert medium such as perlite, gravel, or other substrates.

<span class="mw-page-title-main">Externality</span> In economics, an imposed cost or benefit

In economics, an externality or external cost is an indirect cost or benefit to an uninvolved third party that arises as an effect of another party's activity. Externalities can be considered as unpriced goods involved in either consumer or producer market transactions. Air pollution from motor vehicles is one example. The cost of air pollution to society is not paid by either the producers or users of motorized transport to the rest of society. Water pollution from mills and factories is another example. All consumers are made worse off by pollution but are not compensated by the market for this damage. A positive externality is when an individual's consumption in a market increases the well-being of others, but the individual does not charge the third party for the benefit. The third party is essentially getting a free product. An example of this might be the apartment above a bakery receiving the benefit of enjoyment from smelling fresh pastries every morning. The people who live in the apartment do not compensate the bakery for this benefit.

Climate engineering is a term used for both carbon dioxide removal and solar radiation management, also called solar geoengineering, when applied at a planetary scale. However, they have very different geophysical characteristics which is why the Intergovernmental Panel on Climate Change no longer uses this overarching term. Carbon dioxide removal approaches are part of climate change mitigation. Solar geoengineering involves reflecting some sunlight back to space. All forms of geoengineering are not a standalone solution to climate change, but need to be coupled with other forms of climate change mitigation. Another approach to geoengineering is to increase the Earth's thermal emittance through passive radiative cooling.

<span class="mw-page-title-main">Technogaianism</span> Stance favoring technology development to fight climate change and existential threats

Technogaianism is a bright green environmentalist stance of active support for the research, development and use of emerging and future technologies to help restore Earth's environment. Technogaianists argue that developing safe, clean, alternative technology should be an important goal of environmentalists.

Troubleshooting is a form of problem solving, often applied to repair failed products or processes on a machine or a system. It is a logical, systematic search for the source of a problem in order to solve it, and make the product or process operational again. Troubleshooting is needed to identify the symptoms. Determining the most likely cause is a process of elimination—eliminating potential causes of a problem. Finally, troubleshooting requires confirmation that the solution restores the product or process to its working state.

The following outline is provided as an overview of and topical guide to technology:

<span class="mw-page-title-main">Solar geoengineering</span> Reflection of sunlight to reduce global warming

Solar geoengineering, or solar radiation modification (SRM), is a type of climate engineering in which sunlight would be reflected back to outer space to limit or offset human-caused climate change. There are multiple potential approaches, with stratospheric aerosol injection (SAI) being the most-studied method, followed by marine cloud brightening (MCB). Other methods have been proposed, including a variety of space-based approaches, but they are generally considered less viable, and are not taken seriously by the Intergovernmental Panel on Climate Change. SRM methods could have a rapid cooling effect on atmospheric temperature, but if the intervention were to suddenly stop for any reason, the cooling would soon stop as well. It is estimated that the cooling impact from SAI would cease 1–3 years after the last aerosol injection, while the impact from marine cloud brightening would disappear in just 10 days. Contrastingly, once any carbon dioxide is added to the atmosphere and not removed, its warming impact does not decrease for a century, and some of it will persist for hundreds to thousands of years. As such, solar geoengineering is not a substitute for reducing greenhouse gas emissions but would act as a temporary measure to limit warming while emissions of greenhouse gases are reduced and carbon dioxide is removed.

<span class="mw-page-title-main">Bio-geoengineering</span> Form of climate engineering

Bio-geoengineering is a form of climate engineering which seeks to increase the solar reflectivity of crops by modifying physiological leaf and/or canopy traits to help reduce regional surface warming.

David W. Keith is a professor in the Department of the Geophysical Sciences at the University of Chicago. He joined the University of Chicago in April 2023. Keith previously served as the Gordon McKay Professor of Applied Physics for Harvard University's Paulson School of Engineering and Applied Sciences (SEAS) and professor of public policy for the Harvard Kennedy School at Harvard University. Early contributions include development of the first atom interferometer and a Fourier-transform spectrometer used by NASA to measure atmospheric temperature and radiation transfer from space. A specialist on energy technology, climate science, and related public policy, and a pioneer in carbon capture and storage, Keith is a founder and board member of Carbon Engineering.

<span class="mw-page-title-main">Technological revolution</span> Period of rapid technological change

A technological revolution is a period in which one or more technologies is replaced by another novel technology in a short amount of time. It is a time of accelerated technological progress characterized by innovations whose rapid application and diffusion typically cause an abrupt change in society.

<span class="mw-page-title-main">Space mirror (climate engineering)</span> Artificial satellites designed to change the amount of solar radiation that impacts Earth

Space mirrors are satellites that are designed to change the amount of solar radiation that impacts the Earth as a form of climate engineering. The concept was first theorised in 1923 by physicist Hermann Oberth and later developed in the 1980s by other scientists. Space mirrors can be used to increase or decrease the amount of solar energy that reaches a specific point of the earth for various purposes. They have been theorised as a method of solar geoengineering by creating a space sunshade to deflect sunlight and counter global warming.

Technological transitions (TT) can best be described as a collection of theories regarding how technological innovations occur, the driving forces behind them, and how they are incorporated into society. TT draws on a number of fields, including history of science, technology studies, and evolutionary economics. Alongside the technological advancement, TT considers wider societal changes such as "user practices, regulation, industrial networks, infrastructure, and symbolic meaning or culture". Hughes refers to the 'seamless web' where physical artifacts, organizations, scientific communities, and social practices combine. A technological transition occurs when there is a major shift in these socio-technical configurations.

The Breakthrough Institute is an environmental research center located in Berkeley, California. Founded in 2007 by Michael Shellenberger and Ted Nordhaus, The institute is aligned with ecomodernist philosophy. The Institute advocates for an embrace of modernization and technological development in order to address environmental challenges. Proposing urbanization, agricultural intensification, nuclear power, aquaculture, and desalination as processes with a potential to reduce human demands on the environment, allowing more room for non-human species.

Sociotechnology is the study of processes on the intersection of society and technology. Vojinović and Abbott define it as "the study of processes in which the social and the technical are indivisibly combined". Sociotechnology is an important part of socio-technical design, which is defined as "designing things that participate in complex systems that have both social and technical aspects".

<span class="mw-page-title-main">Ecomodernism</span> Environmental philosophy

Ecomodernism is an environmental philosophy which argues that technological development can protect nature and improve human wellbeing through eco-economic decoupling, i.e., by separating economic growth from environmental impacts.

<span class="mw-page-title-main">Agricultural technology</span> Use of technology in agriculture

Agricultural technology or agrotechnology is the use of technology in agriculture, horticulture, and aquaculture with the aim of improving yield, efficiency, and profitability. Agricultural technology can be products, services or applications derived from agriculture that improve various input/output processes.

<span class="mw-page-title-main">Glossary of artificial intelligence</span> List of definitions of terms and concepts commonly used in the study of artificial intelligence

This glossary of artificial intelligence is a list of definitions of terms and concepts relevant to the study of artificial intelligence, its sub-disciplines, and related fields. Related glossaries include Glossary of computer science, Glossary of robotics, and Glossary of machine vision.

<i>How to Avoid a Climate Disaster</i> 2021 book by Bill Gates

How to Avoid a Climate Disaster: The Solutions We Have and the Breakthroughs We Need is a 2021 book by Bill Gates. In it, Gates presents what he learned in over a decade of studying climate change and investing in innovations to address global warming and recommends technological strategies to tackle it.

<i>Under a White Sky</i> 2021 non-fiction book by Elizabeth Kolbert

Under a White Sky: The Nature of the Future is a 2021 environmental book by Elizabeth Kolbert. The book follows many of the themes she explored in The Sixth Extinction: An Unnatural History.

References

  1. Cook, Stephen P. The Worldview Literacy Book Parthenon Books 2009. Excerpt at http://www.projectworldview.org/wvtheme46.htm
  2. The sacred and the limits of the technological fix AR Drengson – Zygon®, 1984, Wiley Online Library
  3. The Technological Fix Critique of Agricultural Biotechnology, D Scott, http://wiki.umt.edu/odc/images/d/db/TechFixISU6-25.pdf Archived 2016-03-04 at the Wayback Machine
  4. E. Morozov, To Save Everything, Click Here (2013), pg 5
  5. Alexis C. Madrigal (13 March 2013). "Toward a Complex, Realistic, and Moral Tech Criticism". The Atlantic.
  6. 1 2 Samantha (2021-03-24). "Techno solutionism—very few things actually need to be an app". Digital Rights Watch. Retrieved 2022-11-30.
  7. 1 2 3 Marx, Jesse (2022-08-24). "With State Ban Set to Expire, Local Police Could Bring Back Facial Rec". Voice of San Diego. Retrieved 2022-11-30.
  8. Deto, Ryan. "Pittsburgh City Council introduces police facial recognition, predictive policing ban". Pittsburgh City Paper. Retrieved 2022-11-30.
  9. "Understanding Facial Recognition Algorithms". RecFaces. 2021-03-25. Retrieved 2022-11-30.
  10. "Oregon is dropping an artificial intelligence tool used in child welfare system". NPR. Associated Press. 2022-06-02. Retrieved 2022-11-30.
  11. 1 2 "How an algorithm that screens for child neglect could harden racial disparities". PBS NewsHour. 2022-04-29. Retrieved 2022-11-30.
  12. "What is geoengineering?". the Guardian. 18 February 2011. Retrieved 2015-10-24.
  13. "NPIC – National Pesticide Information Centre" (PDF).
  14. 1 2 3 4 5 6 7 8 "The DDT Story | Pesticide Action Network". www.panna.org. Retrieved 2015-10-29.
  15. 1 2 3 4 "World Health Organization. DDT and its derivatives. Environmental aspects. Environmental Health Criteria. Geneva, Switzerland, 1989; Vol. 83". DDT. 2015-10-29.
  16. Toxicology Profile for (Update); U. S. Department of Human Health & Human Services, Agency for Toxic Substances and Disease Registry, 1994.
  17. "Effects of Global Warming". LiveScience.com. Retrieved 2015-11-04.
  18. "internal-combustion engine: Introduction". www.infoplease.com. Retrieved 2015-11-03.
  19. "Generation". Itaipu Binacional. Retrieved 2 January 2015.
  20. "Three Gorges breaks world record for hydropower generation". Xinhua. 1 January 2014. Archived from the original on January 2, 2015. Retrieved 2 January 2015.
  21. "Drought curbs Itaipu hydro output". Business News Americas. 5 January 2015. Retrieved 5 January 2015.
  22. 1 2 3 "GoConqr - Types of technological fix". GoConqr. Retrieved 2015-11-02.
  23. Welfens, Paul J. J.; Ryan, Cillian (2011). Financial Market Integration and Growth: Structural Change and Economic Dynamics in the European Union. Springer Science & Business Media. ISBN   9783642162749.
  24. 1 2 "Appropriate Technology text". lsa.colorado.edu. Retrieved 2015-11-03.
  25. "Moonshots for the Earth: are there technological fixes for climate change?". New Statesman. 29 November 2015. Retrieved 11 February 2017.
  26. "Techno-Fix". New Society Publishers. Retrieved 11 February 2017.
  27. 1 2 Gray, John (22 September 2014). "This Changes Everything: Capitalism vs the Climate review – Naomi Klein's powerful and urgent polemic". The Guardian. Retrieved 11 February 2017.
  28. Scipes, Kim. "A Review of Naomi Klein, This Changes Everything" (PDF). Retrieved 11 February 2017.
  29. Frank, Adam (8 February 2021). "'Under A White Sky' Examines What It Might Take For Humans To Continue To Exist". NPR.org. Retrieved 2021-03-08.
  30. "Geoengineering Has No Place Among Serious Climate Solutions, Declare Experts". BillMoyers.com. 16 February 2015. Retrieved 11 February 2017.
  31. Carpenter, Zoë (10 February 2015). "Scientists: We Cannot Geoengineer Our Way Out of the Climate Crisis". The Nation. Retrieved 11 February 2017.