Mathematics: The Loss of Certainty

Last updated
Mathematics: The Loss of Certainty
Mathematics- The Loss of Certainty (Kline book) cover.jpg
Author Morris Kline
PublisherOxford University Press
Publication date
1980
Pages366
ISBN 0-19-502754-X
OCLC 6042956
Followed by Mathematics and the Search for Knowledge  

Mathematics: The Loss of Certainty is a book by Morris Kline on the developing perspectives within mathematical cultures throughout the centuries. [1]

Contents

This book traces the history of how new results in mathematics have provided surprises to mathematicians through the ages. Examples include how 19th century mathematicians were surprised by the discovery of non-Euclidean geometry and how Godel's incompleteness theorem disappointed many logicians.

Kline furthermore discusses the close relation of some of the most prominent mathematicians such as Newton and Leibniz to God. He believes that Newton's religious interests were the true motivation of his mathematical and scientific work. He quotes Newton from a letter to Reverend Richard Bentley of December 10, 1692:

When I wrote my treatise about our system The Mathematical Principles of Natural Philosophy, I had an eye on such principles as might work with considering men for the belief in a Deity; and nothing can rejoice me more than to find it useful for that purpose.

He also believes Leibniz regarded science as a religious mission which scientists were duty bound to undertake. Kline quotes Leibniz from an undated letter of 1699 or 1700:

It seems to me that the principal goal of the whole of mankind must be the knowledge and development of the wonders of God, and that this is the reason that God gave him the empire of the globe.

Kline also argues that the attempt to establish a universally acceptable, logically sound body of mathematics has failed. He believes that most mathematicians today do not work on applications. Instead they continue to produce new results in pure mathematics at an ever-increasing pace.

Criticism

In the reviews of this book, a number of specialists, paying tribute to the author's outlook, accuse him of biased emotionality, dishonesty and incompetence.

In particular, Raymond G. Ayoub in The American Mathematical Monthly [2] writes:

For centuries, Euclidean geometry seemed to be a good model of space. The results were and still are used effectively in astronomy and in navigation. When it was subjected to the close scrutiny of formalism, it was found to have weaknesses and it is interesting to observe that, this time, it was the close scrutiny of the formalism that led to the discovery (some would say invention) of non-Euclidean geometry. (It was several years later that a satisfactory Euclidean model was devised.)

This writer fails to see why this discovery was, in the words of Kline, a "debacle". Is it not, on the contrary, a great triumph?...

Professor Kline does not deal honestly with his readers. He is a learned man and knows perfectly well that many mathematical ideas created in abstracto have found significant application in the real world. He chooses to ignore this fact, acknowledged by even the most fanatic opponents of mathematics. He does this to support an untenable dogma. One is reminded of the story of the court jester to Louis XIV: the latter had written a poem and asked the jester his opinion. "Your majesty is capable of anything. Your majesty has set out to write doggerel and your majesty has succeeded." On balance, such, alas, must be said of this book.

John Corcoran in Mathematical Reviews : [3]

The overall purpose of the book is to advance as a philosophy of mathematics a mentalistic pragmatism which exalts "applied mathematics" and denigrates both "pure mathematics" and foundational studies. Although its thesis is predicated in part on the deep foundational achievements of twentieth century logicians, the basic philosophy is a close cousin of various philosophies which were influential in the nineteenth century. Moreover, as can be seen from the above-listed ideas, the author's grasp of twentieth century logic is not reliable. Accordingly he finds it surprising (p. 322, 323) that Hilbert, Gödel, Church, members of the Bourbaki school, and other "leaders in the work on foundations affirm that the mathematical concepts and properties exist in some objective sense and that they can be apprehended by human minds". His only argument against the Platonistic realism of the mathematicians just mentioned is based on his own failure to make the distinction between (human) error and (mathematical) falsehood (p. 324)...

The author does not seem to realize that in order to have knowledge it is not necessary to be infallible, nor does he recognize that loss of certainty is not the same as loss of truth. The philosophical and the foundational aspects of the author's argument are woven into a comprehensive survey and interpretation of the history of mathematics. One could hope that the argument would be somewhat redeemed by sound historical work, but this is not so. Two of the periods most important for the author's viewpoint are both interpreted inconsistently. (a) In some passages the author admits the obvious truth that experience and observation played a key role in the development of classical Greek mathematics (pp. 9, 18, 24, 167). But in other passages, he alleges that classical Greek mathematicians scorned experience and observation, founding their theories on "self-evident truths" (pp. 17, 20, 21, 22, 29, 95, 307). (b) In some passages the author portrays the beginning of the nineteenth century as a time of widespread confidence in the soundness of mathematics (pp. 6, 68, 78, 103, 173), but in other passages he describes this period as a time of intellectual turmoil wherein mathematicians entertained grave doubts about the basis of their science (pp. 152, 153, 170, 308)...

One can only regret the philosophical, foundational, and historical inadequacies which vitiate the main argument and which tend to distract attention from the many sound and fascinating observations and insights provided by the book.

Amy Dahan in Revue d'histoire des sciences: [4]

Quant aux derniers chapitres sur les grandes tendances des mathématiques contemporaines, ils sont franchement décevants, assez superficiels. Il n'y a pas d'analyse de la mathématique contemporaine (grande période structuraliste, retour au « concret », flux entre les mathématiques et la physique, etc.

English translation: As for the last chapters on the major trends of contemporary mathematics, they are frankly disappointing, quite superficial. There is no analysis of contemporary mathematics (great structuralist period, return to the "concrete", flow between mathematics and physics, etc.

Scott Weinstein in ETC: A Review of General Semantics: [5]

Professor Kline's book is a lively account of a fascinating subject. Its conclusions are, however, overdrawn and in many cases unjustified. The lesson to be learned from twentieth century foundational research is not that mathematics is in a sorry state, but rather the extent to which deep philosophical issues about mathematics may be illuminated, if not settled, by mathematics itself. Gödel's theorems do indeed intimate that there may be limits to what we can come to know in mathematics, but they also demonstrate through themselves the great heights to which human reason can ascend through mathematical thought.

Ian Stewart in Educational Studies in Mathematics : [6]

This book is firmly in the tradition that we have come to expect from this author; and my reaction to it is much like my reaction to its predecessors: I think three quarters of it is superb, and the other quarter is outrageous nonsense; and the reason is that Morris Kline really doesn't understand what today's mathematics is about, although he has an enviable grasp of yesterday's...

Morris Kline has said elsewhere that he considers the crowning achievement of twentieth-century mathematics to be the Godel theorem. I don't agree: the Gödel theorem, astonishing and deep as it is, had little effect on the mainstream of real mathematical development. It didn't actually lead into anything new and powerful except more theorems of the same kind. It affected how mathematicians thought about what they were doing; but its effect on what they actually did is close to zero. Compare this to the rise of topology: fifty years of apparently introverted efforts by mathematicians, largely ignoring applied science; polished and perfected and developed into a body of technique of immense and still largely unrealised power; and within the last decade becoming important in virtually every field of applied science: engineering, physics, chemistry, numerical analysis. Topology has far more claim to be the crowning achievement of this century.

But Morris Kline can see only the introversion. It doesn't seem to occur to him that a mathematical problem may require concentrated contemplation of mathematics, rather than the problem to which one hopes to apply the resulting theory, to obtain a satisfactory solution. But if I want to cut down an apple tree, and my saw is too blunt, no amount of contemplation of the tree will sharpen it...

There is good mathematics; there is bad mathematics. There are mathematicians who are totally uninterested in science, who are building tools that science will find indispensable. There are mathematicians passionately interested in science, and building tools for specific use there, whose work will become as obsolete as the Zeppelin or the electronic valve. The path from discovery to utility is a rabbit-warren of false ends: mathematics for its own sake has had, and will continue to have, its place in the scheme of things. And, after all, the isolation of the topologist who knows no physics is no worse than that of the physicist who knows no topology. Today's science requires specialization from its individuals: the collective activity of scientists as a whole is where the links are forged. If only Morris Kline showed some inkling of the nature of this process, I would take his arguments more seriously. But his claim that mathematics has gone into decline is one based too much on ignorance, and his arguments are tawdry in comparison to the marvellous, shining vigour of today's mathematics. I too would like to see more overt recognition by mathematicians of the importance of scientific problems; but to miss the fact that they do splendid work even in this apparent isolation is to lose the battle before it has begun.

Bibliography

Notes

  1. John Little (1981) Review:Mathematics: The Loss of Certainty, New Scientist January 15, 1981, link from Google Books
  2. Raymond G. Ayoub, The American Mathematical Monthly, Vol. 89, No. 9 (Nov., 1982), pp. 715–717
  3. John Corcoran, Mathematical Reviews, MR584068 (82e:03013).
  4. Amy Dahan-Dalmédico, Revue d'histoire des sciences, Vol. 36, No. 3/4 (JUILLET-DÉCEMBRE 1983), pp. 356–358.
  5. Scott Weinstein, ETC: A Review of General Semantics, Vol. 38, No. 4 (Winter 1981), pp. 425–430
  6. Ian Stewart, Educational Studies in Mathematics, Vol. 13, No. 4 (Nov., 1982), pp. 446–447

Further reading

Related Research Articles

<span class="mw-page-title-main">Conjecture</span> Proposition in mathematics that is unproven

In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis or Fermat's Last Theorem, have shaped much of mathematical history as new areas of mathematics are developed in order to prove them.

<span class="mw-page-title-main">Euclid</span> Ancient Greek mathematician (fl. 300 BC)

Euclid was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the Elements treatise, which established the foundations of geometry that largely dominated the field until the early 19th century. His system, now referred to as Euclidean geometry, involved new innovations in combination with a synthesis of theories from earlier Greek mathematicians, including Eudoxus of Cnidus, Hippocrates of Chios, and Theaetetus. With Archimedes and Apollonius of Perga, Euclid is generally considered among the greatest mathematicians of antiquity, and one of the most influential in the history of mathematics.

<span class="mw-page-title-main">Gregory Chaitin</span> Argentine-American mathematician

Gregory John Chaitin is an Argentine-American mathematician and computer scientist. Beginning in the late 1960s, Chaitin made contributions to algorithmic information theory and metamathematics, in particular a computer-theoretic result equivalent to Gödel's incompleteness theorem. He is considered to be one of the founders of what is today known as algorithmic complexity together with Andrei Kolmogorov and Ray Solomonoff. Along with the works of e.g. Solomonoff, Kolmogorov, Martin-Löf, and Leonid Levin, algorithmic information theory became a foundational part of theoretical computer science, information theory, and mathematical logic. It is a common subject in several computer science curricula. Besides computer scientists, Chaitin's work draws attention of many philosophers and mathematicians to fundamental problems in mathematical creativity and digital philosophy.

<span class="mw-page-title-main">Kurt Gödel</span> Mathematical logician and philosopher (1906–1978)

Kurt Friedrich Gödel was a logician, mathematician, and philosopher. Considered along with Aristotle and Gottlob Frege to be one of the most significant logicians in history, Gödel had an immense effect upon scientific and philosophical thinking in the 20th century, a time when others such as Bertrand Russell, Alfred North Whitehead, and David Hilbert were using logic and set theory to investigate the foundations of mathematics, building on earlier work by the likes of Richard Dedekind, Georg Cantor and Gottlob Frege.

Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline.

Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics.

The philosophy of mathematics is the branch of philosophy that studies the assumptions, foundations, and implications of mathematics. It aims to understand the nature and methods of mathematics, and find out the place of mathematics in people's lives. The logical and structural nature of mathematics makes this branch of philosophy broad and unique.

<span class="mw-page-title-main">Mathematical proof</span> Reasoning for mathematical statements

A mathematical proof is a deductive argument for a mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms, along with the accepted rules of inference. Proofs are examples of exhaustive deductive reasoning which establish logical certainty, to be distinguished from empirical arguments or non-exhaustive inductive reasoning which establish "reasonable expectation". Presenting many cases in which the statement holds is not enough for a proof, which must demonstrate that the statement is true in all possible cases. A proposition that has not been proved but is believed to be true is known as a conjecture, or a hypothesis if frequently used as an assumption for further mathematical work.

Foundations of mathematics is the study of the philosophical and logical and/or algorithmic basis of mathematics, or, in a broader sense, the mathematical investigation of what underlies the philosophical theories concerning the nature of mathematics. In this latter sense, the distinction between foundations of mathematics and philosophy of mathematics turns out to be vague. Foundations of mathematics can be conceived as the study of the basic mathematical concepts and how they form hierarchies of more complex structures and concepts, especially the fundamentally important structures that form the language of mathematics also called metamathematical concepts, with an eye to the philosophical aspects and the unity of mathematics. The search for foundations of mathematics is a central question of the philosophy of mathematics; the abstract nature of mathematical objects presents special philosophical challenges.

<span class="mw-page-title-main">Metamathematics</span> Study of mathematics itself

Metamathematics is the study of mathematics itself using mathematical methods. This study produces metatheories, which are mathematical theories about other mathematical theories. Emphasis on metamathematics owes itself to David Hilbert's attempt to secure the foundations of mathematics in the early part of the 20th century. Metamathematics provides "a rigorous mathematical technique for investigating a great variety of foundation problems for mathematics and logic". An important feature of metamathematics is its emphasis on differentiating between reasoning from inside a system and from outside a system. An informal illustration of this is categorizing the proposition "2+2=4" as belonging to mathematics while categorizing the proposition "'2+2=4' is valid" as belonging to metamathematics.

Thābit ibn Qurra ; 826 or 836 – February 19, 901, was a polymath known for his work in mathematics, medicine, astronomy, and translation. He lived in Baghdad in the second half of the ninth century during the time of the Abbasid Caliphate.

<span class="mw-page-title-main">Emil Leon Post</span> American mathematician and logician (1897 – 1954)

Emil Leon Post was an American mathematician and logician. He is best known for his work in the field that eventually became known as computability theory.

Calculus, originally called infinitesimal calculus, is a mathematical discipline focused on limits, continuity, derivatives, integrals, and infinite series. Many elements of calculus appeared in ancient Greece, then in China and the Middle East, and still later again in medieval Europe and in India. Infinitesimal calculus was developed in the late 17th century by Isaac Newton and Gottfried Wilhelm Leibniz independently of each other. An argument over priority led to the Leibniz–Newton calculus controversy which continued until the death of Leibniz in 1716. The development of calculus and its uses within the sciences have continued to the present day.

Morris Kline was a professor of mathematics, a writer on the history, philosophy, and teaching of mathematics, and also a popularizer of mathematical subjects.

<span class="mw-page-title-main">Pseudomathematics</span> Work of mathematical cranks

Pseudomathematics, or mathematical crankery, is a mathematics-like activity that does not adhere to the framework of rigor of formal mathematical practice. Common areas of pseudomathematics are solutions of problems proved to be unsolvable or recognized as extremely hard by experts, as well as attempts to apply mathematics to non-quantifiable areas. A person engaging in pseudomathematics is called a pseudomathematician or a pseudomath. Pseudomathematics has equivalents in other scientific fields, and may overlap with other topics characterized as pseudoscience.

<i>The Principles of Mathematics</i> Book by Bertrand Russell

The Principles of Mathematics (PoM) is a 1903 book by Bertrand Russell, in which the author presented his famous paradox and argued his thesis that mathematics and logic are identical.

Mathematical Cranks is a book on pseudomathematics and the cranks who create it, written by Underwood Dudley. It was published by the Mathematical Association of America in their MAA Spectrum book series in 1992 (ISBN 0-88385-507-0).

The Penrose–Lucas argument is a logical argument partially based on a theory developed by mathematician and logician Kurt Gödel. In 1931, he proved that every effectively generated theory capable of proving basic arithmetic either fails to be consistent or fails to be complete. Due to human ability to see the truth of formal system's Gödel sentences, it is argued that the human mind cannot be computed on a Turing Machine that works on Peano arithmetic because the latter can't see the truth value of its Gödel sentence, while human minds can. Mathematician Roger Penrose modified the argument in his first book on consciousness, The Emperor's New Mind (1989), where he used it to provide the basis of his theory of consciousness: orchestrated objective reduction.

<span class="mw-page-title-main">Amy Dahan</span> French mathematician

Amy Dahan-Dalmédico is a French mathematician, historian of mathematics, and historian of the politics of climate change.