Sonoluminescence is a phenomenon that occurs when a small gas bubble is acoustically suspended and periodically driven in a liquid solution at ultrasonic frequencies, resulting in bubble collapse, cavitation, and light emission. The thermal energy that is released from the bubble collapse is so great that it can cause weak light emission. [1] The mechanism of the light emission remains uncertain, but some of the current theories, which are categorized under either thermal or electrical processes, are Bremsstrahlung radiation, argon rectification hypothesis, [2] and hot spot. Some researchers are beginning to favor thermal process explanations as temperature differences have consistently been observed with different methods of spectral analysis. [3] In order to understand the light emission mechanism, it is important to know what is happening in the bubble's interior and at the bubble's surface.
Prior to the early 1990s, the studies on different chemical and physical variables of sonoluminescence were all conducted using multi-bubble sonoluminescence (MBSL). [4] This was a problem since all of the theories and bubble dynamics were based on single bubble sonoluminescence (SBSL) and researchers believed that the bubble oscillations of neighboring bubbles could affect each other. [4] Single bubble sonoluminescence wasn't achieved until the early 1990s and allowed the study of the effects of various parameters on a single cavitating bubble. [4] After many of the early theories were disproved, the remaining plausible theories can be classified into two different processes: electrical and thermal. [1] [4]
SBSL emits more light than MBSL due to fewer interactions between neighboring bubbles. [4] Another advantage for SBSL is that a single bubble collapses without being affected by other surrounding bubbles, allowing more accurate studies on acoustic cavitation and sonoluminescence theories. [4] Some exotic theories have been made, for example from Schwinger in 1992 who hinted the dynamical Casimir effect as a potential photon-emission process. Several theories say that the location of light emission is in the liquid instead of inside the bubble. Other SBSL theories explain that the emission of photons due to the high temperatures in the bubble are analogical to the hot spot theories of MBSL. Regarding the thermal emission a large variety of different processes are prevalent. Because temperatures are increasing from several hundred to many thousand kelvin during collapse, the processes can be molecular recombination, collision-induced emission, molecular emission, excimers, atomic recombination, radiative attachments of ions, neutral and ion Bremsstrahlung, or emission from confined electrons in voids. Which of these theories applies depends on accurate measurements and calculations of the temperature inside the bubble. [1]
Unlike single-bubble sonoluminescence, multi-bubble sonoluminescence is the creation of many oscillating and collapsing bubbles. Typically in MBSL, the light emission from each individual bubble is weaker than in SBSL because the neighboring bubbles can interact and affect each other. [4] Because each neighboring bubble can interact with each other, it can make it more difficult to produce accurate studies and to characterize the properties of the collapsing bubble.
One of the greatest obstacles in sonoluminescence research has been trying to obtain measurements of the interior of the bubble. Most measurements, like temperature and pressure, are indirectly measured using models and bubble dynamics. [1]
Some of the developed theories about the mechanism of SBSL result in prognoses for the peak temperature from 6000 K to 20,000 K. What they all have in common is, a) the interior of the bubble heats up and becomes at least as hot as that measured for MBSL, b) water vapor is the main temperature-limiting factor and c) the averaged temperature over the bubble does not rise higher than 10,000 K. [1]
These equations were made using five major assumptions, [5] with four of them being common to all the equations:
The fifth assumption, which changes between each formulation, pertains to the thermodynamic behavior of the liquid surrounding the bubble. These assumptions severely limit the models when the pulsations are large and the wall velocities reach the speed of sound.
The Keller–Miksis formulation is an equation derived for the large, radial oscillations of a bubble trapped in a sound field. When the frequency of the sound field approaches the natural frequency of the bubble, it will result in large amplitude oscillations. The Keller–Miksis equation takes into account the viscosity, surface tension, incident sound wave, and acoustic radiation coming from the bubble, which was previously unaccounted for in Lauterborn's calculations. Lauterborn solved the equation that Plesset, et al. modified from Rayleigh's original analysis of large oscillating bubbles. [6] Keller and Miksis obtained the following formula: [5]
where is the radius of the bubble, the dots indicate first and second time derivatives, is the density of the liquid, is the speed of sound through the liquid, is the pressure on the liquid side of the bubble's interface, is time, and is the time-delayed driving pressure.
Prosperetti found a way to accurately determine the internal pressure of the bubble using the following equation. [7]
where is the temperature, is the thermal conductivity of the gas, and is the radial distance.
This formulation allows the study of the motions and the effects of heat conduction, shear viscosity, compressibility, and surface tension on small cavitation bubbles in liquids that are set into motion by an acoustic pressure field. The effect of vapor pressure on the cavitation bubble can also be determined using the interfacial temperature. The formulation is specifically designed to describe the motion of a bubble that expands to a maximum radius and then violently collapses or contracts. [8] This set of equations was solved using an improved Euler method.
where is the radius of the bubble, the dots indicate first and second time derivatives, is the density of the liquid, is the speed of sound through the liquid, is the pressure on the liquid side of the bubble's interface, is time, and is the driving pressure.
The theory of bubble dynamics was started in 1917 by Lord Rayleigh during his work with the Royal Navy to investigate cavitation damage on ship propellers. Over several decades his work was refined and developed by Milton Plesset, Andrea Prosperetti, and others. [1] The Rayleigh–Plesset equation [1] is:
where is the bubble radius, is the second order derivative of the bubble radius with respect to time, is the first order derivative of the bubble radius with respect to time, is the density of the liquid, is the pressure in the gas (which is assumed to be uniform), is the background static pressure, is the sinusoidal driving pressure, is the viscosity of the liquid, and is the surface tension of the gas-liquid interface.
The surface of a collapsing bubble like those seen in both SBSL and MBSL serves as a boundary layer between the liquid and vapor phases of the solution.
MBSL has been observed in many different solutions under a variety of conditions. Unfortunately it is more difficult to study as the bubble cloud is uneven and can contain a wide range of pressures and temperatures. SBSL is easier to study due to the predictable nature of the bubble. This bubble is sustained in a standing acoustic wave of moderate pressure, approximately 1.5 atm. [9] Since cavitation does not normally occur at these pressures the bubble may be seeded through several techniques:
The standing acoustic wave, which contains pressure antinodes at the center of the containment vessel, causes the bubbles to quickly coalesce into a single radially oscillating bubble.
Once a single bubble is stabilized in the pressure antinode of the standing wave, it can be made to emit pulses of light by driving the bubble into highly nonlinear oscillations. This is done by the increasing pressure of the acoustic wave to disrupt the steady, linear growth of the bubble which cause the bubble to collapse in a runaway reaction that only reverts due to the high pressures inside the bubble at its minimum radius.
The collapsed bubble expands due to high internal pressure and experiences a diminishing effect until the high pressure antinode returns to the center of the vessel. The bubble continues to occupy more or less the same space due to the acoustic radiation force, the Bjerknes force, and the buoyancy force of the bubble.
The effect that different chemicals present in solution have to the velocity of the collapsing bubble has recently been studied. Nonvolatile liquids such as sulfuric and phosphoric acid have been shown to produce flashes of light several nanoseconds in duration with a much slower bubble wall velocity, [10] and producing several thousand-fold greater light emission. This effect is probably masked in SBSL in aqueous solutions by the absorption of light by water molecules and contaminants.
It can be inferred from these results that the difference in surface tension between these different compounds is the source of different spectra emitted and the time scales in which emission occur.
The inertia of a collapsing bubble generates high pressures and temperatures capable of ionizing a small fraction of the noble gas within the volume of the bubble. This small fraction of ionized gas is transparent and allows for volume emission to be detected. Free electrons from the ionized noble gas begin to interact with other neutral atoms causing thermal bremsstrahlung radiation. Surface emission emits a more intense flash of light with a longer duration and is dependent on wavelength. Experimental data suggest that only volume emission occurs in the case of sonoluminescence. [1] As the sound wave reaches a low energy trough, the bubble expands and electrons are able to recombine with free ions and halt light emission. Light pulse time is dependent on the ionization energy of the noble gas with argon having a light pulse of 160 picoseconds.
Radiance (W/nm) | Relative brightness [1] |
---|---|
1.50×10−12 | Bright |
9.00×10−13 | Semi-bright |
1.75×10−13 | Dim |
7.00×10−14 | Very dim |
2.00×10−14 | Extremely dim |
Solution type | Average max. radiance (W/nm) [1] [11] |
---|---|
Xenon in water | 1.04×10−9 |
Krypton in water | 8.00×10−10 |
Argon in water | 7.75×10−10 |
Neon in water | 5.40×10−10 |
Helium in water | 4.45×10−11 |
3He in water | 3.60×10−11 |
In 1937, the explanations for the light emission have favored electrical discharges. The first ideas have been about the charge separation in cavitation bubbles, which have been seen as spherical capacitors with charges at the center and the wall. At the collapse, the capacitance decreases and voltage increases until electric breakdown occurs. A further suggestion was a charge separation by enhancing charge fluctuations on the bubble wall, however, a breakdown should take place during the expansion phase of the bubble dynamics. These discharge theories have to assume that the emitting bubble undergoes an asymmetric collapse, because a symmetric charge distribution cannot radiate light. [1]
Because the bubble collapse occurs within microseconds, [5] the hot spot theory states that the thermal energy results from an adiabatic bubble collapse. In 1950 it was assumed that the bubble internal temperatures were as high as 10,000 K at the collapse of a spherical symmetric bubble. [1] In the 1990s, sonoluminescence spectra were used by Suslick to measure effective emission temperatures in bubble clouds (multibubble sonoluminescence) of 5000 K, [12] [13] and more recently temperatures as high as 20,000 K in single bubble cavitation. [10] [14] [15]
The limit for the ambient size of the bubble is set by the appearance of instabilities in the shape of the oscillating bubble. The shape stability thresholds depend on changes in the radial dynamics, caused by different liquid viscosities or driving frequencies. If the frequency is decreased, the parametric instability is suppressed as the stabilizing influence of viscosity can appear longer to suppress perturbations. However, the collapses of low-frequency-driven bubbles favor an earlier onset of the Rayleigh-Taylor instability. Larger bubbles can be stabilized to show sonoluminescence when not too high forcing pressures are applied. At low-frequency the water vapor becomes more important. The bubbles can be stabilized by cooling the fluid, whereas more light is emitted. [1]
In physics and chemistry, an equation of state is a thermodynamic equation relating state variables, which describe the state of matter under a given set of physical conditions, such as pressure, volume, temperature, or internal energy. Most modern equations of state are formulated in the Helmholtz free energy. Equations of state are useful in describing the properties of pure substances and mixtures in liquids, gases, and solid states as well as the state of matter in the interior of stars.
Sonoluminescence is the emission of light from imploding bubbles in a liquid when excited by sound.
The Leidenfrost effect is a physical phenomenon in which a liquid, close to a solid surface of another body that is significantly hotter than the liquid's boiling point, produces an insulating vapor layer that keeps the liquid from boiling rapidly. Because of this repulsive force, a droplet hovers over the surface, rather than making physical contact with it. The effect is named after the German doctor Johann Gottlob Leidenfrost, who described it in A Tract About Some Qualities of Common Water.
The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. More simply, the speed of sound is how fast vibrations travel. At 20 °C (68 °F), the speed of sound in air is about 343 m/s, or 1 km in 2.91 s or one mile in 4.69 s. It depends strongly on temperature as well as the medium through which a sound wave is propagating.
The van der Waals equation, named for its originator, the Dutch physicist Johannes Diderik van der Waals, is an equation of state that extends the ideal gas law to include the non-zero size of gas molecules and the interactions between them. As a result the equation is able to model the liquid–vapor phase change; it is the first equation that did this, and consequently it had a substantial impact on physics at that time. It also produces simple analytic expressions for the properties of real substances that shed light on their behavior. One way to write this equation is
In thermodynamics, the Onsager reciprocal relations express the equality of certain ratios between flows and forces in thermodynamic systems out of equilibrium, but where a notion of local equilibrium exists.
The Venturi effect is the reduction in fluid pressure that results when a moving fluid speeds up as it flows through a constricted section of a pipe. The Venturi effect is named after its discoverer, the 18th-century Italian physicist Giovanni Battista Venturi.
The Benedict–Webb–Rubin equation (BWR), named after Manson Benedict, G. B. Webb, and L. C. Rubin, is an equation of state used in fluid dynamics. Working at the research laboratory of the M. W. Kellogg Company, the three researchers rearranged the Beattie–Bridgeman equation of state and increased the number of experimentally determined constants to eight.
Choked flow is a compressible flow effect. The parameter that becomes "choked" or "limited" is the fluid velocity.
In chemistry, the study of sonochemistry is concerned with understanding the effect of ultrasound in forming acoustic cavitation in liquids, resulting in the initiation or enhancement of the chemical activity in the solution. Therefore, the chemical effects of ultrasound do not come from a direct interaction of the ultrasonic sound wave with the molecules in the solution.
A bubble is a globule of a gas substance in a liquid. In the opposite case, a globule of a liquid in a gas, is called a drop. Due to the Marangoni effect, bubbles may remain intact when they reach the surface of the immersive substance.
Nonlinear acoustics (NLA) is a branch of physics and acoustics dealing with sound waves of sufficiently large amplitudes. Large amplitudes require using full systems of governing equations of fluid dynamics and elasticity. These equations are generally nonlinear, and their traditional linearization is no longer possible. The solutions of these equations show that, due to the effects of nonlinearity, sound waves are being distorted as they travel.
In atmospheric thermodynamics, the virtual temperature of a moist air parcel is the temperature at which a theoretical dry air parcel would have a total pressure and density equal to the moist parcel of air. The virtual temperature of unsaturated moist air is always greater than the absolute air temperature, however, as the existence of suspended cloud droplets reduces the virtual temperature.
In fluid thermodynamics, nucleate boiling is a type of boiling that takes place when the surface temperature is hotter than the saturated fluid temperature by a certain amount but where the heat flux is below the critical heat flux. For water, as shown in the graph below, nucleate boiling occurs when the surface temperature is higher than the saturation temperature by between 10 and 30 °C. The critical heat flux is the peak on the curve between nucleate boiling and transition boiling. The heat transfer from surface to liquid is greater than that in film boiling.
The capillary length or capillary constant is a length scaling factor that relates gravity and surface tension. It is a fundamental physical property that governs the behavior of menisci, and is found when body forces (gravity) and surface forces are in equilibrium.
Kenneth S. Suslick is the Marvin T. Schmidt Professor of Chemistry Emeritus at the University of Illinois at Urbana–Champaign. His area of focus is on the chemical and physical effects of ultrasound, sonochemistry, and sonoluminescence. In addition, he has worked in the fields of artificial and machine olfaction, electronic nose technology, chemical sensor arrays, and the use of colorimetric sensor arrays as an optoelectronic nose.
In fluid mechanics, the Rayleigh–Plesset equation or Besant–Rayleigh–Plesset equation is a nonlinear ordinary differential equation which governs the dynamics of a spherical bubble in an infinite body of incompressible fluid. Its general form is usually written as
Cavitation modelling is a type of computational fluid dynamic (CFD) that represents the flow of fluid during cavitation. It covers a wide range of applications, such as pumps, water turbines, pump inducers, and fuel cavitation in orifices as commonly encountered in fuel injection systems.
Bjerknes forces are translational forces on bubbles in a sound wave. The phenomenon is a type of acoustic radiation force. Primary Bjerknes forces are caused by an external sound field; secondary Bjerknes forces are attractive or repulsive forces between pairs of bubbles in the same sound field caused by the pressure field generated by each bubble volume's oscillations. They were first described by Vilhelm Bjerknes in his 1906 Fields of Force.
The Scaled Particle Theory (SPT) is an equilibrium theory of hard-sphere fluids which gives an approximate expression for the equation of state of hard-sphere mixtures and for their thermodynamic properties such as the surface tension.