Mehler kernel Last updated February 12, 2025 Mehler ( 1866 ) defined a function [ 1]
E ( x , y ) = 1 1 − ρ 2 exp ( − ρ 2 ( x 2 + y 2 ) − 2 ρ x y ( 1 − ρ 2 ) ) , {\displaystyle E(x,y)={\frac {1}{\sqrt {1-\rho ^{2}}}}\exp \left(-{\frac {\rho ^{2}(x^{2}+y^{2})-2\rho xy}{(1-\rho ^{2})}}\right)~,}
and showed, in modernized notation, [ 2] that it can be expanded in terms of Hermite polynomials H (.) based on weight function exp(−x ²) as
E ( x , y ) = ∑ n = 0 ∞ ( ρ / 2 ) n n ! H n ( x ) H n ( y ) . {\displaystyle E(x,y)=\sum _{n=0}^{\infty }{\frac {(\rho /2)^{n}}{n!}}~{\mathit {H}}_{n}(x){\mathit {H}}_{n}(y)~.} This result is useful, in modified form, in quantum physics, probability theory, and harmonic analysis.
Physics version In physics, the fundamental solution , (Green's function ), or propagator of the Hamiltonian for the quantum harmonic oscillator is called the Mehler kernel . It provides the fundamental solution [ 3] φ (x ,t ) to
∂ φ ∂ t = ∂ 2 φ ∂ x 2 − x 2 φ ≡ D x φ . {\displaystyle {\frac {\partial \varphi }{\partial t}}={\frac {\partial ^{2}\varphi }{\partial x^{2}}}-x^{2}\varphi \equiv D_{x}\varphi ~.} The orthonormal eigenfunctions of the operator D are the Hermite functions ,
ψ n = H n ( x ) exp ( − x 2 / 2 ) 2 n n ! π , {\displaystyle \psi _{n}={\frac {H_{n}(x)\exp(-x^{2}/2)}{\sqrt {2^{n}n!{\sqrt {\pi }}}}},} with corresponding eigenvalues (-2n -1), furnishing particular solutions
φ n ( x , t ) = e − ( 2 n + 1 ) t H n ( x ) exp ( − x 2 / 2 ) . {\displaystyle \varphi _{n}(x,t)=e^{-(2n+1)t}~H_{n}(x)\exp(-x^{2}/2)~.} The general solution is then a linear combination of these; when fitted to the initial condition φ (x ,0) , the general solution reduces to
φ ( x , t ) = ∫ K ( x , y ; t ) φ ( y , 0 ) d y , {\displaystyle \varphi (x,t)=\int K(x,y;t)\varphi (y,0)dy~,} where the kernel K has the separable representation
K ( x , y ; t ) ≡ ∑ n ≥ 0 e − ( 2 n + 1 ) t π 2 n n ! H n ( x ) H n ( y ) exp ( − ( x 2 + y 2 ) / 2 ) . {\displaystyle K(x,y;t)\equiv \sum _{n\geq 0}{\frac {e^{-(2n+1)t}}{{\sqrt {\pi }}2^{n}n!}}~H_{n}(x)H_{n}(y)\exp(-(x^{2}+y^{2})/2)~.} Utilizing Mehler's formula then yields
∑ n ≥ 0 ( ρ / 2 ) n n ! H n ( x ) H n ( y ) exp ( − ( x 2 + y 2 ) / 2 ) = 1 ( 1 − ρ 2 ) exp ( 4 x y ρ − ( 1 + ρ 2 ) ( x 2 + y 2 ) 2 ( 1 − ρ 2 ) ) . {\displaystyle {\sum _{n\geq 0}{\frac {(\rho /2)^{n}}{n!}}H_{n}(x)H_{n}(y)\exp(-(x^{2}+y^{2})/2)={1 \over {\sqrt {(1-\rho ^{2})}}}\exp \left({4xy\rho -(1+\rho ^{2})(x^{2}+y^{2}) \over 2(1-\rho ^{2})}\right)}~.} On substituting this in the expression for K with the value exp(−2t ) for ρ , Mehler's kernel finally reads
K ( x , y ; t ) = 1 2 π sinh ( 2 t ) exp ( − coth ( 2 t ) ( x 2 + y 2 ) / 2 + csch ( 2 t ) x y ) . {\displaystyle K(x,y;t)={\frac {1}{\sqrt {2\pi \sinh(2t)}}}~\exp \left(-\coth(2t)~(x^{2}+y^{2})/2+\operatorname {csch} (2t)~xy\right).}
When t = 0, variables x and y coincide, resulting in the limiting formula necessary by the initial condition,
K ( x , y ; 0 ) = δ ( x − y ) . {\displaystyle K(x,y;0)=\delta (x-y)~.} As a fundamental solution, the kernel is additive,
∫ d y K ( x , y ; t ) K ( y , z ; t ′ ) = K ( x , z ; t + t ′ ) . {\displaystyle \int dyK(x,y;t)K(y,z;t')=K(x,z;t+t')~.} This is further related to the symplectic rotation structure of the kernel K . [ 4]
When using the usual physics conventions of defining the quantum harmonic oscillator instead via
i ∂ φ ∂ t = 1 2 ( − ∂ 2 ∂ x 2 + x 2 ) φ ≡ H φ , {\displaystyle i{\frac {\partial \varphi }{\partial t}}={\frac {1}{2}}\left(-{\frac {\partial ^{2}}{\partial x^{2}}}+x^{2}\right)\varphi \equiv H\varphi ,} and assuming natural length and energy scales , then the Mehler kernel becomes the Feynman propagator K H {\displaystyle K_{H}} which reads
⟨ x ∣ exp ( − i t H ) ∣ y ⟩ ≡ K H ( x , y ; t ) = 1 2 π i sin t exp ( i 2 sin t ( ( x 2 + y 2 ) cos t − 2 x y ) ) , t < π , {\displaystyle \langle x\mid \exp(-itH)\mid y\rangle \equiv K_{H}(x,y;t)={\frac {1}{\sqrt {2\pi i\sin t}}}\exp \left({\frac {i}{2\sin t}}\left((x^{2}+y^{2})\cos t-2xy\right)\right),\quad t<\pi ,} i.e. K H ( x , y ; t ) = K ( x , y ; i t / 2 ) . {\displaystyle K_{H}(x,y;t)=K(x,y;it/2).}
When t > π {\displaystyle t>\pi } the i sin t {\displaystyle i\sin t} in the inverse square-root should be replaced by | sin t | {\displaystyle |\sin t|} and K H {\displaystyle K_{H}} should be multiplied by an extra Maslov phase factor [ 5]
exp ( i θ M a s l o v ) = exp ( − i π 2 ( 1 2 + ⌊ t π ⌋ ) ) . {\displaystyle \exp \left(i\theta _{\rm {Maslov}}\right)=\exp \left(-i{\frac {\pi }{2}}\left({\frac {1}{2}}+\left\lfloor {\frac {t}{\pi }}\right\rfloor \right)\right).} When t = π / 2 {\displaystyle t=\pi /2} the general solution is proportional to the Fourier transform F {\displaystyle {\mathcal {F}}} of the initial conditions φ 0 ( y ) ≡ φ ( y , 0 ) {\displaystyle \varphi _{0}(y)\equiv \varphi (y,0)} since
φ ( x , t = π / 2 ) = ∫ K H ( x , y ; π / 2 ) φ ( y , 0 ) d y = 1 2 π i ∫ exp ( − i x y ) φ ( y , 0 ) d y = exp ( − i π / 4 ) F [ φ 0 ] ( x ) , {\displaystyle \varphi (x,t=\pi /2)=\int K_{H}(x,y;\pi /2)\varphi (y,0)dy={\frac {1}{\sqrt {2\pi i}}}\int \exp(-ixy)\varphi (y,0)dy=\exp(-i\pi /4){\mathcal {F}}[\varphi _{0}](x)~,} and the exact Fourier transform is thus obtained from the quantum harmonic oscillator's number operator written as [ 6]
N ≡ 1 2 ( x − ∂ ∂ x ) ( x + ∂ ∂ x ) = H − 1 2 = 1 2 ( − ∂ 2 ∂ x 2 + x 2 − 1 ) {\displaystyle N\equiv {\frac {1}{2}}\left(x-{\frac {\partial }{\partial x}}\right)\left(x+{\frac {\partial }{\partial x}}\right)=H-{\frac {1}{2}}={\frac {1}{2}}\left(-{\frac {\partial ^{2}}{\partial x^{2}}}+x^{2}-1\right)~} since the resulting kernel
⟨ x ∣ exp ( − i t N ) ∣ y ⟩ ≡ K N ( x , y ; t ) = exp ( i t / 2 ) K H ( x , y ; t ) = exp ( i t / 2 ) K ( x , y ; i t / 2 ) {\displaystyle \langle x\mid \exp(-itN)\mid y\rangle \equiv K_{N}(x,y;t)=\exp(it/2)K_{H}(x,y;t)=\exp(it/2)K(x,y;it/2)} also compensates for the phase factor still arising in K H {\displaystyle K_{H}} and K {\displaystyle K} , i.e.
φ ( x , t = π / 2 ) = ∫ K N ( x , y ; π / 2 ) φ ( y , 0 ) d y = F [ φ 0 ] ( x ) , {\displaystyle \varphi (x,t=\pi /2)=\int K_{N}(x,y;\pi /2)\varphi (y,0)dy={\mathcal {F}}[\varphi _{0}](x)~,} which shows that the number operator can be interpreted via the Mehler kernel as the generator of fractional Fourier transforms for arbitrary values of t , and of the conventional Fourier transform F {\displaystyle {\mathcal {F}}} for the particular value t = π / 2 {\displaystyle t=\pi /2} , with the Mehler kernel providing an active transform , while the corresponding passive transform is already embedded in the basis change from position to momentum space . The eigenfunctions of N {\displaystyle N} are the usual Hermite functions ψ n ( x ) {\displaystyle \psi _{n}(x)} which are therefore also Eigenfunctions of F {\displaystyle {\mathcal {F}}} . [ 7]
Probability version The result of Mehler can also be linked to probability. For this, the variables should be rescaled as x → x /√ 2 , y → y /√ 2 , so as to change from the 'physicist's' Hermite polynomials H (.) (with weight function exp(−x 2 )) to "probabilist's" Hermite polynomials He (.) (with weight function exp(−x 2 /2)). Then, E becomes
1 1 − ρ 2 exp ( − ρ 2 ( x 2 + y 2 ) − 2 ρ x y 2 ( 1 − ρ 2 ) ) = ∑ n = 0 ∞ ρ n n ! H e n ( x ) H e n ( y ) . {\displaystyle {\frac {1}{\sqrt {1-\rho ^{2}}}}\exp \left(-{\frac {\rho ^{2}(x^{2}+y^{2})-2\rho xy}{2(1-\rho ^{2})}}\right)=\sum _{n=0}^{\infty }{\frac {\rho ^{n}}{n!}}~{\mathit {He}}_{n}(x){\mathit {He}}_{n}(y)~.} The left-hand side here is p (x ,y )/p (x )p (y ) where p (x ,y ) is the bivariate Gaussian probability density function for variables x ,y having zero means and unit variances:
p ( x , y ) = 1 2 π 1 − ρ 2 exp ( − ( x 2 + y 2 ) − 2 ρ x y 2 ( 1 − ρ 2 ) ) , {\displaystyle p(x,y)={\frac {1}{2\pi {\sqrt {1-\rho ^{2}}}}}\exp \left(-{\frac {(x^{2}+y^{2})-2\rho xy}{2(1-\rho ^{2})}}\right)~,} and p (x ), p (y ) are the corresponding probability densities of x and y (both standard normal).
There follows the usually quoted form of the result (Kibble 1945) [ 8]
p ( x , y ) = p ( x ) p ( y ) ∑ n = 0 ∞ ρ n n ! H e n ( x ) H e n ( y ) . {\displaystyle p(x,y)=p(x)p(y)\sum _{n=0}^{\infty }{\frac {\rho ^{n}}{n!}}~{\mathit {He}}_{n}(x){\mathit {He}}_{n}(y)~.} This expansion is most easily derived by using the two-dimensional Fourier transform of p (x ,y ) , which is
c ( i u 1 , i u 2 ) = exp ( − ( u 1 2 + u 2 2 − 2 ρ u 1 u 2 ) / 2 ) . {\displaystyle c(iu_{1},iu_{2})=\exp(-(u_{1}^{2}+u_{2}^{2}-2\rho u_{1}u_{2})/2)~.} This may be expanded as
exp ( − ( u 1 2 + u 2 2 ) / 2 ) ∑ n = 0 ∞ ρ n n ! ( u 1 u 2 ) n . {\displaystyle \exp(-(u_{1}^{2}+u_{2}^{2})/2)\sum _{n=0}^{\infty }{\frac {\rho ^{n}}{n!}}(u_{1}u_{2})^{n}~.} The Inverse Fourier transform then immediately yields the above expansion formula.
This result can be extended to the multidimensional case. [ 8] [ 9] [ 10]
Since Hermite functions ψn are orthonormal eigenfunctions of the Fourier transform ,
F [ ψ n ] ( y ) = ( − i ) n ψ n ( y ) , {\displaystyle {\mathcal {F}}[\psi _{n}](y)=(-i)^{n}\psi _{n}(y)~,} in harmonic analysis and signal processing , they diagonalize the Fourier operator,
F [ f ] ( y ) = ∫ d x f ( x ) ∑ n ≥ 0 ( − i ) n ψ n ( x ) ψ n ( y ) . {\displaystyle {\mathcal {F}}[f](y)=\int dxf(x)\sum _{n\geq 0}(-i)^{n}\psi _{n}(x)\psi _{n}(y)~.} Thus, the continuous generalization for real angle α can be readily defined (Wiener , 1929; [ 11] Condon , 1937 [ 12] ), the fractional Fourier transform (FrFT), with kernel
F α = ∑ n ≥ 0 ( − i ) 2 α n / π ψ n ( x ) ψ n ( y ) . {\displaystyle {\mathcal {F}}_{\alpha }=\sum _{n\geq 0}(-i)^{2\alpha n/\pi }\psi _{n}(x)\psi _{n}(y)~.} This is a continuous family of linear transforms generalizing the Fourier transform , such that, for α = π /2 , it reduces to the standard Fourier transform, and for α = −π /2 to the inverse Fourier transform.
The Mehler formula, for ρ = exp(−iα ), thus directly provides
F α [ f ] ( y ) = 1 − i cot ( α ) 2 π e i cot ( α ) 2 y 2 ∫ − ∞ ∞ e − i ( csc ( α ) y x − cot ( α ) 2 x 2 ) f ( x ) d x . {\displaystyle {\mathcal {F}}_{\alpha }[f](y)={\sqrt {\frac {1-i\cot(\alpha )}{2\pi }}}~e^{i{\frac {\cot(\alpha )}{2}}y^{2}}\int _{-\infty }^{\infty }e^{-i\left(\csc(\alpha )~yx-{\frac {\cot(\alpha )}{2}}x^{2}\right)}f(x)\,\mathrm {d} x~.} The square root is defined such that the argument of the result lies in the interval [−π /2, π /2].
If α is an integer multiple of π , then the above cotangent and cosecant functions diverge. In the limit , the kernel goes to a Dirac delta function in the integrand, δ(x−y) or δ(x+y) , for α an even or odd multiple of π , respectively. Since F 2 {\displaystyle {\mathcal {F}}^{2}} [f ] = f (−x ), F α {\displaystyle {\mathcal {F}}_{\alpha }} [f ] must be simply f (x ) or f (−x ) for α an even or odd multiple of π , respectively.
References ↑ Mehler, F. G. (1866), "Ueber die Entwicklung einer Function von beliebig vielen Variabeln nach Laplaceschen Functionen höherer Ordnung" , Journal für die Reine und Angewandte Mathematik (in German) (66): 161– 176, ISSN 0075-4102 , ERAM 066.1720cj (cf. p 174, eqn (18) & p 173, eqn (13) ) ↑ Erdélyi, Arthur ; Magnus, Wilhelm ; Oberhettinger, Fritz; Tricomi, Francesco G. (1955), Higher transcendental functions. Vol. II , McGraw-Hill (scan : p.194 10.13 (22) ) ↑ Pauli, W. , Wave Mechanics: Volume 5 of Pauli Lectures on Physics (Dover Books on Physics, 2000) ISBN 0486414620 ; See section 44. ↑ The quadratic form in its exponent, up to a factor of −1/2, involves the simplest (unimodular, symmetric) symplectic matrix in Sp(2,R ). That is, ( x , y ) M ( x y ) , {\displaystyle (x,y){\mathbf {M} }{\begin{pmatrix}x\\y\end{pmatrix}}~,~} whereM ≡ csch ( 2 t ) ( cosh ( 2 t ) − 1 − 1 cosh ( 2 t ) ) , {\displaystyle {\mathbf {M} }\equiv \operatorname {csch} (2t){\begin{pmatrix}\cosh(2t)&-1\\-1&\cosh(2t)\end{pmatrix}}~,} so it preserves the symplectic metric, M T ( 0 1 − 1 0 ) M = ( 0 1 − 1 0 ) . {\displaystyle {\mathbf {M} }^{\text{T}}~{\begin{pmatrix}0&1\\-1&0\end{pmatrix}}~{\mathbf {M} }={\begin{pmatrix}0&1\\-1&0\end{pmatrix}}~.} ↑ Horvathy, Peter (1979). "Extended Feynman Formula for Harmonic Oscillator". International Journal of Theoretical Physics . 18 (4): 245-250. Bibcode :1979IJTP...18..245H . doi :10.1007/BF00671761 . S2CID 117363885 . ↑ Wolf, Kurt B. (1979), Integral Transforms in Science and Engineering , Springer ( and ); see section 7.5.10. ↑ Celeghini, Enrico; Gadella, Manuel; del Olmo, Mariano A. (2021). "Hermite Functions and Fourier Series" . Symmetry . 13 (5): 853. arXiv : 2007.10406 . Bibcode :2021Symm...13..853C . doi : 10.3390/sym13050853 . 1 2 Kibble, W. F. (1945). "An extension of a theorem of Mehler's on Hermite polynomials". Mathematical Proceedings of the Cambridge Philosophical Society . 41 (1): 12– 15. Bibcode :1945PCPS...41...12K . doi :10.1017/S0305004100022313 . MR 0012728 . S2CID 121931906 . ↑ Slepian, David (1972), "On the symmetrized Kronecker power of a matrix and extensions of Mehler's formula for Hermite polynomials", SIAM Journal on Mathematical Analysis , 3 (4): 606– 616, doi :10.1137/0503060 , ISSN 0036-1410 , MR 0315173 ↑ Hörmander, Lars (1995). "Symplectic classification of quadratic forms, and general Mehler formulas". Mathematische Zeitschrift . 219 : 413– 449. doi :10.1007/BF02572374 . S2CID 122233884 . ↑ Wiener , N (1929), "Hermitian Polynomials and Fourier Analysis", Journal of Mathematics and Physics 8 : 70–73. ↑ Condon, E. U. (1937). "Immersion of the Fourier transform in a continuous group of functional transformations", Proc. Natl. Acad. Sci. USA 23 , 158–164. online This page is based on this
Wikipedia article Text is available under the
CC BY-SA 4.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.