Metacompact space

Last updated

In the mathematical field of general topology, a topological space is said to be metacompact if every open cover has a point-finite open refinement. That is, given any open cover of the topological space, there is a refinement that is again an open cover with the property that every point is contained only in finitely many sets of the refining cover.

Contents

A space is countably metacompact if every countable open cover has a point-finite open refinement.

Properties

The following can be said about metacompactness in relation to other properties of topological spaces:

Covering dimension

A topological space X is said to be of covering dimension n if every open cover of X has a point-finite open refinement such that no point of X is included in more than n + 1 sets in the refinement and if n is the minimum value for which this is true. If no such minimal n exists, the space is said to be of infinite covering dimension.

See also

Related Research Articles

Compact space Topological space with properties generalizing notions of closed and bounded

In mathematics, specifically general topology, compactness is a property that generalizes the notion of a subset of Euclidean space being closed and bounded. Examples of compact spaces include a closed real interval, a union of a finite number of closed intervals, a rectangle, or a finite set of points. This notion is defined for more general topological spaces in various ways, which are usually equivalent in Euclidean space but may be inequivalent in other spaces.

In topology and related areas of mathematics, a metrizable space is a topological space that is homeomorphic to a metric space. That is, a topological space is said to be metrizable if there is a metric such that the topology induced by is Metrization theorems are theorems that give sufficient conditions for a topological space to be metrizable.

This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology.

In topology and related branches of mathematics, a normal space is a topological space X that satisfies Axiom T4: every two disjoint closed sets of X have disjoint open neighborhoods. A normal Hausdorff space is also called a T4 space. These conditions are examples of separation axioms and their further strengthenings define completely normal Hausdorff spaces, or T5 spaces, and perfectly normal Hausdorff spaces, or T6 spaces.

In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by Dieudonné (1944). Every compact space is paracompact. Every paracompact Hausdorff space is normal, and a Hausdorff space is paracompact if and only if it admits partitions of unity subordinate to any open cover. Sometimes paracompact spaces are defined so as to always be Hausdorff.

General topology Branch of topology

In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. Another name for general topology is point-set topology.

In mathematics, a Lindelöf space is a topological space in which every open cover has a countable subcover. The Lindelöf property is a weakening of the more commonly used notion of compactness, which requires the existence of a finite subcover.

In mathematics, particularly topology, a cover of a set is a collection of sets whose union includes as a subset. Formally, if is an indexed family of sets then is a cover of if

<i>Counterexamples in Topology</i> Book by Lynn Steen

Counterexamples in Topology is a book on mathematics by topologists Lynn Steen and J. Arthur Seebach, Jr.

In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space which is invariant under homeomorphisms. That is, a property of spaces is a topological property if whenever a space X possesses that property every space homeomorphic to X possesses that property. Informally, a topological property is a property of the space that can be expressed using open sets.

In topology, a branch of mathematics, a topological manifold is a topological space which locally resembles real n-dimensional Euclidean space. Topological manifolds are an important class of topological spaces, with applications throughout mathematics. All manifolds are topological manifolds by definition. Other types of manifolds are formed by adding structure to a topological manifold. Every manifold has an "underlying" topological manifold, obtained by simply "forgetting" the added structure.

In mathematics, in the field of general topology, a topological space is said to be orthocompact if every open cover has an interior-preserving open refinement. That is, given an open cover of the topological space, there is a refinement that is also an open cover, with the further property that at any point, the intersection of all open sets in the refinement containing that point, is also open.

In mathematics, in the field of topology, a topological space is said to be pseudocompact if its image under any continuous function to R is bounded. Many authors include the requirement that the space be completely regular in the definition of pseudocompactness. Pseudocompact spaces were defined by Edwin Hewitt in 1948.

In mathematics, in the field of topology, a topological space is said to be a shrinking space if every open cover admits a shrinking. A shrinking of an open cover is another open cover indexed by the same indexing set, with the property that the closure of each open set in the shrinking lies inside the corresponding original open set.

In mathematics a topological space is called countably compact if every countable open cover has a finite subcover.

In mathematics, a collection   of subsets of a topological space is said to be point-finite if every point of lies in only finitely many members of .

In mathematics, a topological space X is said to be limit point compact or weakly countably compact if every infinite subset of X has a limit point in X. This property generalizes a property of compact spaces. In a metric space, limit point compactness, compactness, and sequential compactness are all equivalent. For general topological spaces, however, these three notions of compactness are not equivalent.

In the mathematical field of topology, local finiteness is a property of collections of subsets of a topological space. It is fundamental in the study of paracompactness and topological dimension.

References