Shrinking space

Last updated

In mathematics, in the field of topology, a topological space is said to be a shrinking space if every open cover admits a shrinking. A shrinking of an open cover is another open cover indexed by the same indexing set, with the property that the closure of each open set in the shrinking lies inside the corresponding original open set. [1]

Contents

Properties

The following facts are known about shrinking spaces:

These facts are particularly important because shrinking of open covers is a common technique in the theory of differential manifolds and while constructing functions using a partition of unity.

See also

Related Research Articles

<span class="mw-page-title-main">Compact space</span> Type of mathematical space

In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all limiting values of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval [0,1] would be compact. Similarly, the space of rational numbers is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers is not compact either, because it excludes the two limiting values and . However, the extended real number linewould be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces.

In topology and related areas of mathematics, a metrizable space is a topological space that is homeomorphic to a metric space. That is, a topological space is said to be metrizable if there is a metric such that the topology induced by is Metrization theorems are theorems that give sufficient conditions for a topological space to be metrizable.

This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology. For a list of terms specific to algebraic topology, see Glossary of algebraic topology.

In topology and related branches of mathematics, a normal space is a topological space X that satisfies Axiom T4: every two disjoint closed sets of X have disjoint open neighborhoods. A normal Hausdorff space is also called a T4 space. These conditions are examples of separation axioms and their further strengthenings define completely normal Hausdorff spaces, or T5 spaces, and perfectly normal Hausdorff spaces, or T6 spaces.

In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by Dieudonné (1944). Every compact space is paracompact. Every paracompact Hausdorff space is normal, and a Hausdorff space is paracompact if and only if it admits partitions of unity subordinate to any open cover. Sometimes paracompact spaces are defined so as to always be Hausdorff.

<span class="mw-page-title-main">General topology</span> Branch of topology

In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology.

In mathematics, a Lindelöf space is a topological space in which every open cover has a countable subcover. The Lindelöf property is a weakening of the more commonly used notion of compactness, which requires the existence of a finite subcover.

In mathematics, and more particularly in set theory, a cover of a set is a family of subsets of whose union is all of . More formally, if is an indexed family of subsets , then is a cover of if . Thus the collection is a cover of if each element of belongs to at least one of the subsets .

In mathematics, the Lebesgue covering dimension or topological dimension of a topological space is one of several different ways of defining the dimension of the space in a topologically invariant way.

In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological spaces which is closed under homeomorphisms. That is, a property of spaces is a topological property if whenever a space X possesses that property every space homeomorphic to X possesses that property. Informally, a topological property is a property of the space that can be expressed using open sets.

In topology, a branch of mathematics, a topological manifold is a topological space that locally resembles real n-dimensional Euclidean space. Topological manifolds are an important class of topological spaces, with applications throughout mathematics. All manifolds are topological manifolds by definition. Other types of manifolds are formed by adding structure to a topological manifold. Every manifold has an "underlying" topological manifold, obtained by simply "forgetting" the added structure. However, not every topological manifold can be endowed with a particular additional structure. For example, the E8 manifold is a topological manifold which cannot be endowed with a differentiable structure.

In the mathematical field of general topology, a topological space is said to be metacompact if every open cover has a point-finite open refinement. That is, given any open cover of the topological space, there is a refinement that is again an open cover with the property that every point is contained only in finitely many sets of the refining cover.

In mathematics, in the field of general topology, a topological space is said to be orthocompact if every open cover has an interior-preserving open refinement. That is, given an open cover of the topological space, there is a refinement that is also an open cover, with the further property that at any point, the intersection of all open sets in the refinement containing that point is also open.

In mathematics, in the field of general topology, a topological space is said to be mesocompact if every open cover has a compact-finite open refinement. That is, given any open cover, we can find an open refinement with the property that every compact set meets only finitely many members of the refinement.

In mathematics, in the realm of topology, a paranormal space is a topological space in which every countable discrete collection of closed sets has a locally finite open expansion.

In mathematics a topological space is called countably compact if every countable open cover has a finite subcover.

In mathematics, a topological space is called collectionwise normal if for every discrete family Fi (iI) of closed subsets of there exists a pairwise disjoint family of open sets Ui (iI), such that FiUi. Here a family of subsets of is called discrete when every point of has a neighbourhood that intersects at most one of the sets from . An equivalent definition of collectionwise normal demands that the above Ui (iI) themselves form a discrete family, which is stronger than pairwise disjoint.

In mathematics, a collection or family of subsets of a topological space is said to be point-finite if every point of lies in only finitely many members of

A collection of subsets of a topological space is said to be locally finite if each point in the space has a neighbourhood that intersects only finitely many of the sets in the collection.

References

  1. 1 2 3 4 5 Hart, K. P.; Nagata, Jun-iti; Vaughan, J. E. (2003), Encyclopedia of General Topology, Elsevier, p. 199, ISBN   9780080530864 .