Michel Rohmer

Last updated

Michel Rohmer, born on 31 January 1948, is a French chemist specialising in the chemistry of micro-organisms. He has particularly studied isoprenoids.

Contents

He is a member of the French Academy of sciences.

Biography

Michel Rohmer studied at the École nationale supérieure de chimie in Strasbourg. He defended his thesis at the Louis-Pasteur University in Strasbourg in 1975 in Guy Ourisson's laboratory. He became professor of organic and bio-organic chemistry at the École nationale supérieure de chimie de Mulhouse from 1979 to 1994, then returned to the Université Louis-Pasteur in Strasbourg. He was Director of the Institut de chimie de Strasbourg (UMR 7177). [1] Since 1 September 2013, he has been Professor Emeritus of the University of Strasbourg.

Research

Michel Rohmer is working on isoprenoids, a class of natural substances familiar to all in the form of cholesterol in our cells. He studied hopanoids in particular, which are found in sedimentary rock materials. He then discovered biohopanoids, a family of pentacyclic triterpenoids. His work on the biosynthesis of these bacterial hopanoids is revolutionizing the understanding of the early stages of isoprenoid biosynthesis. Rohmer proposes a new biosynthetic pathway leading to the universal precursors of isoprenoids, isopentenyl and dimethylallyl diphosphates. This path is different from the mevalonate path that has been accepted for more than fifty years. The metabolic pathway of methylerythritol phosphate is widely distributed in bacteria, which are omnipresent in the chloroplasts of phototrophic organisms.

Awards and honours

Appendices

Bibliography

Related Research Articles

<span class="mw-page-title-main">Lipid</span> Substance of biological origin that is soluble in nonpolar solvents

Lipids are a broad group of organic compounds which include fats, waxes, sterols, fat-soluble vitamins, monoglycerides, diglycerides, phospholipids, and others. The functions of lipids include storing energy, signaling, and acting as structural components of cell membranes. Lipids have applications in the cosmetic and food industries, and in nanotechnology.

<span class="mw-page-title-main">Mevalonate pathway</span> Series of interconnected biochemical reactions

The mevalonate pathway, also known as the isoprenoid pathway or HMG-CoA reductase pathway is an essential metabolic pathway present in eukaryotes, archaea, and some bacteria. The pathway produces two five-carbon building blocks called isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), which are used to make isoprenoids, a diverse class of over 30,000 biomolecules such as cholesterol, vitamin K, coenzyme Q10, and all steroid hormones.

<span class="mw-page-title-main">Hopanoids</span> Class of chemical compounds

Hopanoids are a diverse subclass of triterpenoids with the same hydrocarbon skeleton as the compound hopane. This group of pentacyclic molecules therefore refers to simple hopenes, hopanols and hopanes, but also to extensively functionalized derivatives such as bacteriohopanepolyols (BHPs) and hopanoids covalently attached to lipid A.

<span class="mw-page-title-main">Isopentenyl pyrophosphate</span> Chemical compound

Isopentenyl pyrophosphate is an isoprenoid precursor. IPP is an intermediate in the classical, HMG-CoA reductase pathway and in the non-mevalonate MEP pathway of isoprenoid precursor biosynthesis. Isoprenoid precursors such as IPP, and its isomer DMAPP, are used by organisms in the biosynthesis of terpenes and terpenoids.

(<i>E</i>)-4-Hydroxy-3-methyl-but-2-enyl pyrophosphate Chemical compound

(E)-4-Hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP or HMB-PP) is an intermediate of the MEP pathway (non-mevalonate pathway) of isoprenoid biosynthesis. The enzyme HMB-PP synthase (GcpE, IspG) catalyzes the conversion of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (MEcPP) into HMB-PP. HMB-PP is then converted further to isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) by HMB-PP reductase (LytB, IspH).

The non-mevalonate pathway—also appearing as the mevalonate-independent pathway and the 2-C-methyl-D-erythritol 4-phosphate/1-deoxy-D-xylulose 5-phosphate (MEP/DOXP) pathway—is an alternative metabolic pathway for the biosynthesis of the isoprenoid precursors isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). The currently preferred name for this pathway is the MEP pathway, since MEP is the first committed metabolite on the route to IPP.

Non-peptidic antigens are low-molecular-weight compounds that stimulate human Vγ9/Vδ2 T cells. The most potent activator for Vγ9/Vδ2 T cells is (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), a natural intermediate of the non-mevalonate pathway of isopentenyl pyrophosphate (IPP) biosynthesis. HMB-PP is an essential metabolite in most pathogenic bacteria including Mycobacterium tuberculosis as well as in malaria parasites, but is absent from the human host.

<span class="mw-page-title-main">Isopentenyl-diphosphate delta isomerase</span> Class of enzymes

Isopentenyl pyrophosphate isomerase, also known as Isopentenyl-diphosphate delta isomerase, is an isomerase that catalyzes the conversion of the relatively un-reactive isopentenyl pyrophosphate (IPP) to the more-reactive electrophile dimethylallyl pyrophosphate (DMAPP). This isomerization is a key step in the biosynthesis of isoprenoids through the mevalonate pathway and the MEP pathway.

2-<i>C</i>-Methylerythritol 4-phosphate Chemical compound

2-C-Methyl-D-erythritol 4-phosphate (MEP) is an intermediate on the MEP pathway of isoprenoid precursor biosynthesis. It is the first committed metabolite on that pathway on the route to IPP and DMAPP.

<span class="mw-page-title-main">Diphosphomevalonate decarboxylase</span> InterPro Family

Diphosphomevalonate decarboxylase (EC 4.1.1.33), most commonly referred to in scientific literature as mevalonate diphosphate decarboxylase, is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase</span> Class of enzymes

In enzymology, a 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase is an enzyme that catalyzes the chemical reaction:

In enzymology, a 4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol kinase is an enzyme that catalyzes the chemical reaction

2-C-Methyl-<small>D</small>-erythritol-2,4-cyclopyrophosphate Chemical compound

2-C-Methyl-d-erythritol-2,4-cyclopyrophosphate (MEcPP) is an intermediate in the MEP pathway (non-mevalonate) of isoprenoid precursor biosynthesis. MEcPP is produced by MEcPP synthase (IspF) and is a substrate for HMB-PP synthase (IspG).

4-Diphosphocytidyl-2-C-methylerythritol is an intermediate in the MEP pathway of isoprenoid precursor biosynthesis. It is produced by the enzyme 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase (IspD) and is a substrate for CDP-ME kinase (IspE).

4-Diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate is an intermediate in the MEP pathway of isoprenoid precursor biosynthesis.

4-Hydroxy-3-methylbut-2-enyl diphosphate reductase (EC 1.17.1.2, isopentenyl-diphosphate:NADP+ oxidoreductase, LytB, (E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate reductase, HMBPP reductase, IspH, LytB/IspH) is an enzyme in the non-mevalonate pathway. It acts upon (E)-4-Hydroxy-3-methyl-but-2-enyl pyrophosphate (or "HMB-PP").

<span class="mw-page-title-main">Aucubin</span> Chemical compound

Aucubin is an iridoid glycoside. Iridoids are commonly found in plants and function as defensive compounds. Iridoids decrease the growth rates of many generalist herbivores.

<span class="mw-page-title-main">YgbB N terminal protein domain</span>

In molecular biology, YgbB is a protein domain. This entry makes reference to a number of proteins from eukaryotes and prokaryotes which share this common N-terminal signature and appear to be involved in terpenoid biosynthesis. The YgbB protein is a putative enzyme thought to aid terpenoid and isoprenoid biosynthesis, a vital chemical in all living organisms. This protein domain is part of an enzyme which catalyses a reaction in a complex pathway.

Methylobacterium organophilum is a facultatively methylotrophic bacteria from the genus of Methylobacterium which was isolated from sediments from the Lake Mendota in Madison in the United States. Methylobacterium organophilum can degrade methanol.

<span class="mw-page-title-main">Hartmut K. Lichtenthaler</span> German botanist

Hartmut K. Lichtenthaler is a German botanist, plant physiologist and university professor.

References

  1. "Faculté de Chimie: Accueil - Université de Strasbourg". chimie.unistra.fr. Retrieved 2019-02-21.
  2. http://media.education.gouv.fr/file/Brochures/77/6/listelaureatsall12-2_25776.pdf [ bare URL PDF ]
  3. "IUF » Michel ROHMER". Archived from the original on 2008-11-26. Retrieved 2019-11-07.
  4. "Michel Rohmer : Repères biographiques - les membres de l'Académie des sciences". Archived from the original on 2009-05-29. Retrieved 2019-11-07.
  5. "American Chemical Society". American Chemical Society.