Micromotors are very small particles (measured in microns) that can move themselves. [1] The term is often used interchangeably with "nanomotor," despite the implicit size difference. These micromotors actually propel themselves in a specific direction autonomously when placed in a chemical solution. There are many different micromotor types operating under a host of mechanisms. Easily the most important examples are biological motors such as bacteria and any other self-propelled cells. Synthetically, researchers have exploited oxidation-reduction reactions to produce chemical gradients, local fluid flows, or streams of bubbles that then propel these micromotors through chemical media. [2] Different stimuli, both external (light, [3] magnetism [4] ) and internal (fuel concentration, material composition, [5] particle asymmetry [6] ) can be used to control the behavior of these micromotors.
Micromotors may have applications in medicine since they have been shown to be able to deliver materials to living cells within an organism. They also have been shown to be effective in degrading certain chemical and biological warfare agents.
Janus particle micromotors consist of two or more components with distinct physical properties, such as a titanium dioxide particle capped with gold, [7] or a polystyrene bead coated on one side with a layer of platinum [8] [9] which both display a difference in catalytic activity between halves. When these motors are placed in a fuel, such as hydrogen peroxide, one redox half-reaction occurs on each pole according to catalytic activity. As the oxidation reaction produces electrons and protons, the reduction reaction consumes these as reactants on the opposite pole of the particle, this movement of molecules generates a fluid flow across the surface of the motor and this drives the particle forward. The catalytic difference between each pole of the Janus motor can be characteristic of the material [10] such as metals which catalyze at different rates, or induced by external stimuli like UV light [7] which can be absorbed by semi-conductor materials like titanium dioxide to excite electrons for the redox reaction.
Catalytic activity is not the only way to generate motion using Janus materials; self-propelled Janus droplets can be made using a complex emulsion of two different surfactant oils [11] which move forward spontaneously due to the difference in surface tension as the two oils solubilize.
However, a Janus structure is not always required to break symmetry. For enzyme-attached particles or lipid vesicles, symmetry can be disrupted by the uneven distribution of enzymes on their surface. [12] [13] [14] [15] These discoveries offer new insights into designing synthetic micro/nanomotors.
Nano particle incorporation into micromotors has been recently studied and observed further. Specifically, gold nanoparticles have been introduced to the traditional titanium dioxide outer layer of most micromotors. [16] The size of these gold nanoparticles typically is distributed from anywhere around 3 nm to 30 nm. [17] Since these gold nanoparticles are layered on top of the inner core (usually a reducing agent, such as magnesium), there is enhanced macrogalvanic corrosion observed. [18] Technically, this is where the cathode and anode are in contact with each other, creating a circuit. The cathode, as a result of the circuit, is corroded. The depletion of this inner core leads to the reduction of the chemical environment as a fuel source. For example, in a TiO2/Au/Mg micromotor in a seawater environment, the magnesium inner core would experience corrosion and reduce water to begin a chain of reactions that results in hydrogen gas as a fuel source. The reduction reaction is as follows: [16]
Researchers hope that micromotors will be used in medicine to deliver medication and do other precise small-scale interventions. [19] A study has shown that micromotors could deliver gold particles to the stomach layer of living mice. [20]
Micromotors are capable of photocatalytic degradation with the appropriate composition. [21] [22] Specifically, micromotors with a titanium dioxide/gold nanoparticle outer layer and magnesium inner core are currently being examined and studied for their degradation efficacy against chemical and biological warfare agents (CBWA). These new TiO2/Au/Mg micromotors produce no reagents or toxic byproducts from the propulsion and degradation mechanisms. However, they are very effective against CBWAs and present a complete and rapid degradation of certain CBWAs. There has been recent research of TiO2/Au/Mg micromotors and their use and degradation efficacy against biological warfare agents, such as Bacillus anthracis, and chemical warfare agents, such as organophosphate nerve agents- a class of acetylcholinesterase inhibitors. Therefore, application of these micromotors is a possibility for medical and environmental applications.
These new micromotors are composed of a photoactive photocatalyst outer/surface layer that often has active metal nanoparticles (platinum, gold, silver, etc.) on the surface as well. [23] Under UV irradiation, the adsorbed water produces strongly oxidizing hydroxyl radicals. Also, adsorbed molecular O2 reacts with electrons producing superoxide anions. Those superoxide anions also produce to the production of peroxide radicals, hydroxyl radicals, and hydroxyl anions. Transformation into carbon dioxide and water, otherwise known as mineralization, of CWAs has been observed as a result of the radicals and anions. Also, the active metal nanoparticles effectively shift the Fermi level of the photocatalyst, enhancing the distribution of the electron charge. Therefore, the lifetime of the radicals and anions is extended, so the implementation of the active metal nanoparticles has greatly improved photocatalytic efficiency.
Metal–organic frameworks (MOFs) are a class of compounds that are composed of a metal ion cluster coordinated to an organic linker. These compounds can form 1D, 2D and 3D structures. They possess a porous morphology which can be tuned in terms of shape and size depending on the metal ion and organic linker used to form the MOF. These pores grants them great catalytic properties which is why MOF research focused on the catalytic degradation of contaminants for environmental remediation has been gaining more attention. The major limitation of MOFs is that they tend to settle at the bottom of the solution, reducing their effectiveness since they are not coming into contact with the contaminant. Thus, in the past years more and more research focused on MOF for catalytic degradation have been implementing micromotors. The MOF particles are half-coated with a metal, creating a Janus motor particle (half metal, half MOF). The motor aspect of the particle enhances its diffusion, increasing the probability of the MOF and contaminant encountering each other in solution, thus increasing its degradation rate. These MOF based micromotors have proven to be extremely efficient at decontaminating water, and after the fuel used for propulsion (in most cases hydrogen peroxide) is completely consumed, they settle at the bottom of the solution, facilitating the removal of the Janus motor particles from the solution. [24] [25]
Titanium dioxide, also known as titanium(IV) oxide or titania, is the inorganic compound derived from titanium with the chemical formula TiO
2. When used as a pigment, it is called titanium white, Pigment White 6 (PW6), or CI 77891. It is a white solid that is insoluble in water, although mineral forms can appear black. As a pigment, it has a wide range of applications, including paint, sunscreen, and food coloring. When used as a food coloring, it has E number E171. World production in 2014 exceeded 9 million tonnes. It has been estimated that titanium dioxide is used in two-thirds of all pigments, and pigments based on the oxide have been valued at a price of $13.2 billion.
A "photoelectrochemical cell" is one of two distinct classes of device. The first produces electrical energy similarly to a dye-sensitized photovoltaic cell, which meets the standard definition of a photovoltaic cell. The second is a photoelectrolytic cell, that is, a device which uses light incident on a photosensitizer, semiconductor, or aqueous metal immersed in an electrolytic solution to directly cause a chemical reaction, for example to produce hydrogen via the electrolysis of water.
A nanomotor is a molecular or nanoscale device capable of converting energy into movement. It can typically generate forces on the order of piconewtons.
In chemistry, photocatalysis is the acceleration of a photoreaction in the presence of a photocatalyst, the excited state of which "repeatedly interacts with the reaction partners forming reaction intermediates and regenerates itself after each cycle of such interactions." In many cases, the catalyst is a solid that upon irradiation with UV- or visible light generates electron–hole pairs that generate free radicals. Photocatalysts belong to three main groups; heterogeneous, homogeneous, and plasmonic antenna-reactor catalysts. The use of each catalysts depends on the preferred application and required catalysis reaction.
Cerium(IV) oxide, also known as ceric oxide, ceric dioxide, ceria, cerium oxide or cerium dioxide, is an oxide of the rare-earth metal cerium. It is a pale yellow-white powder with the chemical formula CeO2. It is an important commercial product and an intermediate in the purification of the element from the ores. The distinctive property of this material is its reversible conversion to a non-stoichiometric oxide.
As the world's energy demand continues to grow, the development of more efficient and sustainable technologies for generating and storing energy is becoming increasingly important. According to Dr. Wade Adams from Rice University, energy will be the most pressing problem facing humanity in the next 50 years and nanotechnology has potential to solve this issue. Nanotechnology, a relatively new field of science and engineering, has shown promise to have a significant impact on the energy industry. Nanotechnology is defined as any technology that contains particles with one dimension under 100 nanometers in length. For scale, a single virus particle is about 100 nanometers wide.
An electroosmotic pump (EOP), or EO pump, is used for generating flow or pressure by use of an electric field. One application of this is removing liquid flooding water from channels and gas diffusion layers and direct hydration of the proton exchange membrane in the membrane electrode assembly (MEA) of the proton exchange membrane fuel cells.
Janus particles are special types of nanoparticles or microparticles whose surfaces have two or more distinct physical properties. This unique surface of Janus particles allows two different types of chemistry to occur on the same particle. The simplest case of a Janus particle is achieved by dividing the particle into two distinct parts, each of them either made of a different material, or bearing different functional groups. For example, a Janus particle may have one half of its surface composed of hydrophilic groups and the other half hydrophobic groups, the particles might have two surfaces of different color, fluorescence, or magnetic properties. This gives these particles unique properties related to their asymmetric structure and/or functionalization.
Nanomaterials can be both incidental and engineered. Engineered nanomaterials (ENMs) are nanoparticles that are made for use, are defined as materials with dimensions between 1 and 100nm, for example in cosmetics or pharmaceuticals like zinc oxide and TiO2 as well as microplastics. Incidental nanomaterials are found from sources such as cigarette smoke and building demolition. Engineered nanoparticles have become increasingly important for many applications in consumer and industrial products, which has resulted in an increased presence in the environment. This proliferation has instigated a growing body of research into the effects of nanoparticles on the environment. Natural nanoparticles include particles from natural processes like dust storms, volcanic eruptions, forest fires, and ocean water evaporation.
Platinum nanoparticles are usually in the form of a suspension or colloid of nanoparticles of platinum in a fluid, usually water. A colloid is technically defined as a stable dispersion of particles in a fluid medium.
An electrocatalyst is a catalyst that participates in electrochemical reactions. Electrocatalysts are a specific form of catalysts that function at electrode surfaces or, most commonly, may be the electrode surface itself. An electrocatalyst can be heterogeneous such as a platinized electrode. Homogeneous electrocatalysts, which are soluble, assist in transferring electrons between the electrode and reactants, and/or facilitate an intermediate chemical transformation described by an overall half reaction. Major challenges in electrocatalysts focus on fuel cells.
Silver nanoparticles are nanoparticles of silver of between 1 nm and 100 nm in size. While frequently described as being 'silver' some are composed of a large percentage of silver oxide due to their large ratio of surface to bulk silver atoms. Numerous shapes of nanoparticles can be constructed depending on the application at hand. Commonly used silver nanoparticles are spherical, but diamond, octagonal, and thin sheets are also common.
Self-propelled particles (SPP), also referred to as self-driven particles, are terms used by physicists to describe autonomous agents, which convert energy from the environment into directed or persistent random walk. Natural systems which have inspired the study and design of these particles include walking, swimming or flying animals. Other biological systems include bacteria, cells, algae and other micro-organisms. Generally, self-propelled particles often refer to artificial systems such as robots or specifically designed particles such as swimming Janus colloids, bimetallic nanorods, nanomotors and walking grains. In the case of directed propulsion, which is driven by a chemical gradient, this is referred to as chemotaxis, observed in biological systems, e.g. bacteria quorum sensing and ant pheromone detection, and in synthetic systems, e.g. enzyme molecule chemotaxis and enzyme powered hard and soft particles.
Nanoremediation is the use of nanoparticles for environmental remediation. It is being explored to treat ground water, wastewater, soil, sediment, or other contaminated environmental materials. Nanoremediation is an emerging industry; by 2009, nanoremediation technologies had been documented in at least 44 cleanup sites around the world, predominantly in the United States. In Europe, nanoremediation is being investigated by the EC funded NanoRem Project. A report produced by the NanoRem consortium has identified around 70 nanoremediation projects worldwide at pilot or full scale. During nanoremediation, a nanoparticle agent must be brought into contact with the target contaminant under conditions that allow a detoxifying or immobilizing reaction. This process typically involves a pump-and-treat process or in situ application.
Many experimental realizations of self-propelled particles exhibit a strong tendency to aggregate and form clusters, whose dynamics are much richer than those of passive colloids. These aggregates of particles form for a variety of reasons, from chemical gradients to magnetic and ultrasonic fields. Self-propelled enzyme motors and synthetic nanomotors also exhibit clustering effects in the form of chemotaxis. Chemotaxis is a form of collective motion of biological or non-biological particles toward a fuel source or away from a threat, as observed experimentally in enzyme diffusion and also synthetic chemotaxis or phototaxis. In addition to irreversible schooling, self-propelled particles also display reversible collective motion, such as predator–prey behavior and oscillatory clustering and dispersion.
Collective motion is defined as the spontaneous emergence of ordered movement in a system consisting of many self-propelled agents. It can be observed in everyday life, for example in flocks of birds, schools of fish, herds of animals and also in crowds and car traffic. It also appears at the microscopic level: in colonies of bacteria, motility assays and artificial self-propelled particles. The scientific community is trying to understand the universality of this phenomenon. In particular it is intensively investigated in statistical physics and in the field of active matter. Experiments on animals, biological and synthesized self-propelled particles, simulations and theories are conducted in parallel to study these phenomena. One of the most famous models that describes such behavior is the Vicsek model introduced by Tamás Vicsek et al. in 1995.
A microswimmer is a microscopic object with the ability to move in a fluid environment. Natural microswimmers are found everywhere in the natural world as biological microorganisms, such as bacteria, archaea, protists, sperm and microanimals. Since the turn of the millennium there has been increasing interest in manufacturing synthetic and biohybrid microswimmers. Although only two decades have passed since their emergence, they have already shown promise for various biomedical and environmental applications.
Vivek Vijayrao Polshettiwar is an Indian chemist who is a professor of chemistry at the Tata Institute of Fundamental Research. His research focuses on advanced nanomaterials and nanocatalysis, particularly for harvesting solar energy and converting carbon dioxide into valuable chemicals and fuels. His work is aimed at producing value-added products from CO2 to effectively combat climate change. He was awarded the International Union of Pure and Applied Chemistry prize for Green Chemistry in 2022. In 2023, he received the Falling Walls Award in Physical Sciences. The following year, in 2024, he was elected as a Fellow of the Indian Academy of Sciences (FASc). In 2024, he received Vigyan Yuva Shanti Swarup Bhatnagar (SSB) award from the President of India.
Professor Günther Rupprechter is an Austrian scientist, full professor and currently Head of the Institute of Materials Chemistry, Technische Universität Wien. He has worked in physical chemistry, surface science, nanoscience and nanotechnology, particularly in the area of catalytic surface reactions on heterogeneous catalysts, identifying fundamental reaction steps at the atomic level by in situ and operando spectroscopy and microscopy.
Green photocatalysts are photocatalysts derived from environmentally friendly sources. They are synthesized from natural, renewable, and biological resources, such as plant extracts, biomass, or microorganisms, minimizing the use of toxic chemicals and reducing the environmental impact associated with conventional photocatalyst production.