Mitochondrial calcium uniporter

Last updated
Mitochondrial calcium uniporter
Identifiers
SymbolMCU
Pfam PF04678
InterPro IPR018782
TCDB 1.A.77
OPM superfamily 486
OPM protein 6dnf
Membranome 216
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
Mitochondrial calcium uniporter
Identifiers
SymbolMCU
Alt. symbolsC10orf42, CCDC109A, FLJ46135
NCBI gene 90550
HGNC 23526
OMIM 614197
PDB Q8NE86
RefSeq NM_138357
UniProt Q8NE86
Other data
Locus Chr. 10 222
Search for
Structures Swiss-model
Domains InterPro

The mitochondrial calcium uniporter (MCU) is a transmembrane protein that allows the passage of calcium ions from a cell's cytosol into mitochondria. Its activity is regulated by MICU1 and MICU2, which together with the MCU make up the mitochondrial calcium uniporter complex. [1]

Contents

The MCU is one of the primary sources of mitochondria uptake of calcium, and flow is dependent on membrane potential of the inner mitochondrial membrane and the concentration of calcium in the cytosol relative to the concentration in the mitochondria. Balancing calcium concentration is necessary to increase the cell's energy supply and regulate cell death. Calcium is balanced through the MCU in conjunction with the sodium-calcium exchanger.

The MCU has a very low affinity for calcium, so the cytosolic calcium concentration needs to be approximately 5-10 uM for significant transport of calcium into the mitochondria. Mitochondria are closely associated with the endoplasmic reticulum (ER), at contact sites, which contains stores of cellular calcium ions for calcium signaling. The presence of 1,4,5-triphosphate (IP3) triggers the release of calcium from these intracellular stores, which creates microdomains of high calcium concentration between the ER and the mitochondria, creating the conditions for the MCU to take up calcium. [2]

Ruthenium red and Ru360 are typical reagents used to experimentally block the MCU to study its properties and role in mitochondrial signaling. [3] [4]

MICU1 and MICU2

MICU1

The mitochondrial calcium uptake 1 (MICU1) is a single pass membrane protein, it contains 2 binding domains. This protein was first discovered before the MCU by only a few months. MICU1 was used as a bait to figure out what the core of the mitochondrial calcium uniporter was. [2] Once both MICU1 and MCU were discovered scientists made some intriguing discoveries in regards to the two proteins. Both MICU1 and MCU share similar RNA sequences, same pattern of expression, and they both interact with one another in the intermitochondrial membrane. It was first found through the use of siRNA screening of the membrane. The functions of MICU1 are still being studied; however, there are some important functions MICU1 plays in the intermitochondrial membrane. MICU1 helps to stabilize the entire mitochondrial calcium uniporter complex, it also limits the amount of calcium that enters the cell during low concentrations of calcium. However, along with limiting the entry of calcium into the mitochondrial matrix, it functions alongside MCU to keep the accumulated calcium inside the matrix of the mitochondria, [2] and promotes ion specificity by preventing aberrant loading of transition metals into the mitochondria. [5] [6] [7]

MICU2

Mitochondrial calcium uptake 2 (MICU2) is another intermitochondrial membrane protein. It works alongside MICU1 and contains roughly 25% of the same DNA sequence. [2] MICU2 works with MICU1 and MCU to reduce the amount of calcium coming into the matrix. It is shown that when both MICU1 and MICU2 are sequestered there is reduced calcium; however, whenever MICU1 is sequestered and MICU2 is activated, normal calcium flow. It is also shown that all three, MCU, MICU1, and MICU2 are part of a single complex, the mitochondrial calcium uniporter complex resumes. [2] Research using a CRISPR/Cas9 technique has found that MICU1 and MICU2 play other roles as well. They are essential for cell growth, cell invasion, and cell replication.

Related Research Articles

<span class="mw-page-title-main">Mitochondrion</span> Organelle in eukaryotic cells responsible for respiration

A mitochondrion is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used throughout the cell as a source of chemical energy. They were discovered by Albert von Kölliker in 1857 in the voluntary muscles of insects. The term mitochondrion was coined by Carl Benda in 1898. The mitochondrion is popularly nicknamed the "powerhouse of the cell", a phrase coined by Philip Siekevitz in a 1957 article of the same name.

<span class="mw-page-title-main">Exocytosis</span> Active transport and bulk transport in which a cell transports molecules out of the cell

Exocytosis is a form of active transport and bulk transport in which a cell transports molecules out of the cell. As an active transport mechanism, exocytosis requires the use of energy to transport material. Exocytosis and its counterpart, endocytosis, are used by all cells because most chemical substances important to them are large polar molecules that cannot pass through the hydrophobic portion of the cell membrane by passive means. Exocytosis is the process by which a large amount of molecules are released; thus it is a form of bulk transport. Exocytosis occurs via secretory portals at the cell plasma membrane called porosomes. Porosomes are permanent cup-shaped lipoprotein structure at the cell plasma membrane, where secretory vesicles transiently dock and fuse to release intra-vesicular contents from the cell.

In cellular biology, active transport is the movement of molecules or ions across a cell membrane from a region of lower concentration to a region of higher concentration—against the concentration gradient. Active transport requires cellular energy to achieve this movement. There are two types of active transport: primary active transport that uses adenosine triphosphate (ATP), and secondary active transport that uses an electrochemical gradient. This process is in contrast to passive transport, which allows molecules or ions to move down their concentration gradient, from an area of high concentration to an area of low concentration, without energy.

<span class="mw-page-title-main">Calcium in biology</span> Use of calcium by organisms

Calcium ions (Ca2+) contribute to the physiology and biochemistry of organisms' cells. They play an important role in signal transduction pathways, where they act as a second messenger, in neurotransmitter release from neurons, in contraction of all muscle cell types, and in fertilization. Many enzymes require calcium ions as a cofactor, including several of the coagulation factors. Extracellular calcium is also important for maintaining the potential difference across excitable cell membranes, as well as proper bone formation.

<span class="mw-page-title-main">Sarcoplasmic reticulum</span> Menbrane-bound structure in muscle cells for storing calcium

The sarcoplasmic reticulum (SR) is a membrane-bound structure found within muscle cells that is similar to the smooth endoplasmic reticulum in other cells. The main function of the SR is to store calcium ions (Ca2+). Calcium ion levels are kept relatively constant, with the concentration of calcium ions within a cell being 10,000 times smaller than the concentration of calcium ions outside the cell. This means that small increases in calcium ions within the cell are easily detected and can bring about important cellular changes (the calcium is said to be a second messenger). Calcium is used to make calcium carbonate (found in chalk) and calcium phosphate, two compounds that the body uses to make teeth and bones. This means that too much calcium within the cells can lead to hardening (calcification) of certain intracellular structures, including the mitochondria, leading to cell death. Therefore, it is vital that calcium ion levels are controlled tightly, and can be released into the cell when necessary and then removed from the cell.

<span class="mw-page-title-main">Uniporter</span>

Uniporters, also known as solute carriers or facilitated transporters, are a type of membrane transport protein that passively transports solutes across a cell membrane. It uses facilitated diffusion for the movement of solutes down their concentration gradient from an area of high concentration to an area of low concentration. Unlike active transport, it does not require energy in the form of ATP to function. Uniporters are specialized to carry one specific ion or molecule and can be categorized as either channels or carriers. Facilitated diffusion may occur through three mechanisms: uniport, symport, or antiport. The difference between each mechanism depends on the direction of transport, in which uniport is the only transport not coupled to the transport of another solute.

<span class="mw-page-title-main">Excitotoxicity</span> Process that kills nerve cells

In excitotoxicity, nerve cells suffer damage or death when the levels of otherwise necessary and safe neurotransmitters such as glutamate become pathologically high, resulting in excessive stimulation of receptors. For example, when glutamate receptors such as the NMDA receptor or AMPA receptor encounter excessive levels of the excitatory neurotransmitter, glutamate, significant neuronal damage might ensue. Excess glutamate allows high levels of calcium ions (Ca2+) to enter the cell. Ca2+ influx into cells activates a number of enzymes, including phospholipases, endonucleases, and proteases such as calpain. These enzymes go on to damage cell structures such as components of the cytoskeleton, membrane, and DNA. In evolved, complex adaptive systems such as biological life it must be understood that mechanisms are rarely, if ever, simplistically direct. For example, NMDA in subtoxic amounts induces neuronal survival of otherwise toxic levels of glutamate.

<span class="mw-page-title-main">Mitochondrial matrix</span> Space within the inner membrane of the mitochondrion

In the mitochondrion, the matrix is the space within the inner membrane. The word "matrix" stems from the fact that this space is viscous, compared to the relatively aqueous cytoplasm. The mitochondrial matrix contains the mitochondrial DNA, ribosomes, soluble enzymes, small organic molecules, nucleotide cofactors, and inorganic ions.[1] The enzymes in the matrix facilitate reactions responsible for the production of ATP, such as the citric acid cycle, oxidative phosphorylation, oxidation of pyruvate, and the beta oxidation of fatty acids.

<span class="mw-page-title-main">Intermembrane space</span>

The intermembrane space (IMS) is the space occurring between or involving two or more membranes. In cell biology, it is most commonly described as the region between the inner membrane and the outer membrane of a mitochondrion or a chloroplast. It also refers to the space between the inner and outer nuclear membranes of the nuclear envelope, but is often called the perinuclear space. The IMS of mitochondria plays a crucial role in coordinating a variety of cellular activities, such as regulation of respiration and metabolic functions. Unlike the IMS of the mitochondria, the IMS of the chloroplast does not seem to have any obvious function.

<span class="mw-page-title-main">Cyclophilin</span>

Cyclophilins (CYPs) are a family of proteins named after their ability to bind to ciclosporin, an immunosuppressant which is usually used to suppress rejection after internal organ transplants. They are found in all domains of life. These proteins have peptidyl prolyl isomerase activity, which catalyzes the isomerization of peptide bonds from trans form to cis form at proline residues and facilitates protein folding.

<span class="mw-page-title-main">Calcium signaling</span> Intracellular communication process

Calcium signaling is the use of calcium ions (Ca2+) to communicate and drive intracellular processes often as a step in signal transduction. Ca2+ is important for cellular signalling, for once it enters the cytosol of the cytoplasm it exerts allosteric regulatory effects on many enzymes and proteins. Ca2+ can act in signal transduction resulting from activation of ion channels or as a second messenger caused by indirect signal transduction pathways such as G protein-coupled receptors.

<span class="mw-page-title-main">Inner mitochondrial membrane</span>

The inner mitochondrial membrane (IMM) is the mitochondrial membrane which separates the mitochondrial matrix from the intermembrane space.

The mitochondrial permeability transition pore is a protein that is formed in the inner membrane of the mitochondria under certain pathological conditions such as traumatic brain injury and stroke. Opening allows increase in the permeability of the mitochondrial membranes to molecules of less than 1500 daltons in molecular weight. Induction of the permeability transition pore, mitochondrial membrane permeability transition, can lead to mitochondrial swelling and cell death through apoptosis or necrosis depending on the particular biological setting.

The sodium-calcium exchanger (often denoted Na+/Ca2+ exchanger, exchange protein, or NCX) is an antiporter membrane protein that removes calcium from cells. It uses the energy that is stored in the electrochemical gradient of sodium (Na+) by allowing Na+ to flow down its gradient across the plasma membrane in exchange for the countertransport of calcium ions (Ca2+). A single calcium ion is exported for the import of three sodium ions. The exchanger exists in many different cell types and animal species. The NCX is considered one of the most important cellular mechanisms for removing Ca2+.

<span class="mw-page-title-main">Ruthenium red</span> Chemical compound

The inorganic dye ammoniated ruthenium oxychloride, also known as ruthenium red, is used in histology to stain aldehyde fixed mucopolysaccharides.

<span class="mw-page-title-main">Mitochondrial membrane transport protein</span>

Mitochondrial membrane transport proteins, also known as mitochondrial carrier proteins, are proteins which exist in the membranes of mitochondria. They serve to transport molecules and other factors, such as ions, into or out of the organelles. Mitochondria contain both an inner and outer membrane, separated by the inter-membrane space, or inner boundary membrane. The outer membrane is porous, whereas the inner membrane restricts the movement of all molecules. The two membranes also vary in membrane potential and pH. These factors play a role in the function of mitochondrial membrane transport proteins. There are 53 discovered human mitochondrial membrane transporters, with many others that are known to still need discovered.

<span class="mw-page-title-main">CCDC109B</span> Protein found in humans

Coiled-coil domain containing 109B (CCDC109B) is a potential calcium uniporter protein found in the membrane of human cells and is encoded by the CCDC109B gene. While CCDC109B is a transmembrane protein it is unclear if it is located within the cell membrane or mitochondrial membrane.

<span class="mw-page-title-main">HINT2</span> Protein-coding gene in the species Homo sapiens

Histidine triad nucleotide binding protein 2 (HINT2) is a mitochondrial protein that in humans is encoded by the HINT2 gene on chromosome 9. This protein is an AMP-lysine hydrolase and phosphoamidase and may contribute to tumor suppression.

Ru360 is an oxo-bridged dinuclear ruthenium ammine complex with an absorption spectrum maximum at 360 nm. It is an analog of ruthenium red, a well-known effective inhibitor of the mitochondrial calcium uniporter.

<span class="mw-page-title-main">Mitochondria associated membranes</span> Cellular structure

Mitochondria-associated membranes (MAMs) represent regions of the endoplasmic reticulum (ER) which are reversibly tethered to mitochondria. These membranes are involved in import of certain lipids from the ER to mitochondria and in regulation of calcium homeostasis, mitochondrial function, autophagy and apoptosis. They also play a role in development of neurodegenerative diseases and glucose homeostasis.

References

  1. "MCU - Calcium uniporter protein, mitochondrial precursor - Homo sapiens (Human)". UniProt.org. UniProt Consortium. Retrieved 2016-02-24.
  2. 1 2 3 4 5 Marchi S, Pinton P (March 2014). "The mitochondrial calcium uniporter complex: molecular components, structure and physiopathological implications". The Journal of Physiology. 592 (5): 829–839. doi:10.1113/jphysiol.2013.268235. PMC   3948548 . PMID   24366263.
  3. Broekemeier KM, Krebsbach RJ, Pfeiffer DR (October 1994). "Inhibition of the mitochondrial Ca2+ uniporter by pure and impure ruthenium red". Molecular and Cellular Biochemistry. 139 (1): 33–40. doi:10.1007/bf00944201. PMID   7531818. S2CID   516473.
  4. Matlib MA, Zhou Z, Knight S, Ahmed S, Choi KM, Krause-Bauer J, et al. (April 1998). "Oxygen-bridged dinuclear ruthenium amine complex specifically inhibits Ca2+ uptake into mitochondria in vitro and in situ in single cardiac myocytes". The Journal of Biological Chemistry. 273 (17): 10223–10231. doi: 10.1074/jbc.273.17.10223 . PMID   9553073.
  5. Kamer KJ, Sancak Y, Fomina Y, Meisel JD, Chaudhuri D, Grabarek Z, et al. (August 2018). "MICU1 imparts the mitochondrial uniporter with the ability to discriminate between Ca2+ and Mn2+". Proceedings of the National Academy of Sciences of the United States of America. 115 (34): E7960–E7969. Bibcode:2018PNAS..115E7960K. doi: 10.1073/pnas.1807811115 . PMC   6112746 . PMID   30082385.
  6. Wettmarshausen J, Goh V, Huang KT, Arduino DM, Tripathi U, Leimpek A, et al. (November 2018). "MICU1 Confers Protection from MCU-Dependent Manganese Toxicity" (PDF). Cell Reports. 25 (6): 1425–1435.e7. doi:10.1016/j.celrep.2018.10.037. PMID   30403999. S2CID   53209158.
  7. Monteith AJ, Miller JM, Beavers WN, Maloney KN, Seifert EL, Hajnoczky G, et al. (December 2021). "Mitochondrial calcium uniporter affects neutrophil bactericidal activity during Staphylococcus aureus infection". Infection and Immunity. 90 (2): IAI0055121. doi:10.1128/IAI.00551-21. PMC   8853686 . PMID   34871043.