Mobile mapping

Last updated
Google Street View Car Google Street View Car in Honolulu.jpg
Google Street View Car

Mobile mapping is the process of collecting geospatial data from a mobile vehicle, [1] typically fitted with a range of GNSS, photographic, radar, laser, LiDAR or any number of remote sensing systems. Such systems are composed of an integrated array of time synchronised navigation sensors and imaging sensors mounted on a mobile platform. [2] The primary output from such systems include GIS data, digital maps, and georeferenced images and video.

Contents

History

The development of direct reading georeferencing technologies opened the way for mobile mapping systems. GPS and Inertial Navigation Systems, have allowed rapid and accurate determination of position and attitude of remote sensing equipment, [3] effectively leading to direct mapping of features of interest without the need for complex post-processing of observed data.

Applications

Aerial mobile mapping

Traditional techniques of geo-referencing aerial photography, ground profiling radar, or Lidar are prohibitively expensive, particularly in inaccessible areas, or where the type of data collected makes interpretation of individual features difficult. Image direct georeferencing, simplifies the mapping control for large scale mapping tasks. [4]

Emergency response planning

Mobile mapping systems allow rapid collection of data to allow accurate assessment of conditions on the ground. [5]

Internet applications

Internet, and mobile device users, are increasingly utilising geo-spatial information, either in the form of mapping, or geo-referenced imaging. Google, Microsoft, and Yahoo have adapted both aerial photographs and satellite images to develop online mapping systems. Street View type images are also an increasing market. [6]

Location aware PDA systems rely on geo-referenced features collated from mobile mapping sources. [7]

Road mapping and highway facility management

GPS combined with digital camera systems allow rapid update of road maps. [8] [9] [10] The same system can be utilised to carry out efficient road condition surveys, [11] and facilities management. [12] Laser scanning technologies, applied in the mobile mapping sense, allow full 3D data collection of slope, bankings, etc. [13]

Road Inventory and Asset Management

Mobile LiDAR with a digital imaging system is being used to gather data which after post-processing generates strip plan, horizontal and vertical profile, all other asset within and beyond ROW including abutting land use and deficient geometry. This also calls for riding quality of pavement, Existing Traffic Characteristics and capacity of the corridor, Speed-flow-density analysis, Road Safety Review of the Corridor, Junction, and median opening, Facilities for commercial vehicles. Thus all data being used to form a performance matrix help identifying the gaps in corridor efficiency for prioritization of interventions to improve corridor efficiency.

Digital Twins applications

Mobile mapping combined with indoor mapping are being used in creation of digital twins. [14] These digital twins can be a single building or an entire city or country. Several mobile mapping companies, known as "Maker of Digital Twins" are embarking on capturing the digital twins market amid the growing trend among organizations and governments that are adopting digital twins for Internet of Things and Artificial Intelligence applications within the Industrial Revolution 4.0 framework.

Footnotes

  1. Vitrià, et al. (2004) p.69 Retrieved June 2011.
  2. Hofmann-Wellenhof, B., et al. (2003) p.379-380. Retrieved June 2011.
  3. Tao, C. V. (2007) p.5. Retrieved June 2011
  4. Gao, J. (2009) p.196. Retrieved June 2011.
  5. Zlatanova, et al. (2008) p.103. Retrieved June 2011.
  6. Tao, C.V. (2007) p.xiii. Retrieved June 2011.
  7. Weng, Q. (2009) p.70. Retrieved June 2011.
  8. Tao, C.V. (2009) p.614. Retrieved June 2011.
  9. Hammoudi et al. (2013) p.10. Retrieved November 2018.
  10. Hammoudi et al. (2013) p.139-144. Retrieved January 2016.
  11. Zlatanova, et al. (2008) p.113. Retrieved June 2011.
  12. Gavrilova, M.L. (2006) p.996-1001. Retrieved June 2011.
  13. van Oosterom, P. (2008) p.8. Retrieved June 2011
  14. Digital twin#cite note-:4-1

Related Research Articles

<span class="mw-page-title-main">Digital elevation model</span> 3D computer-generated imagery and measurements of terrain

A digital elevation model (DEM) or digital surface model (DSM) is a 3D computer graphics representation of elevation data to represent terrain or overlaying objects, commonly of a planet, moon, or asteroid. A "global DEM" refers to a discrete global grid. DEMs are used often in geographic information systems (GIS), and are the most common basis for digitally produced relief maps. A digital terrain model (DTM) represents specifically the ground surface while DEM and DSM may represent tree top canopy or building roofs.

<span class="mw-page-title-main">Remote sensing</span> Acquisition of information at a significant distance from the subject

Remote sensing is the acquisition of information about an object or phenomenon without making physical contact with the object, in contrast to in situ or on-site observation. The term is applied especially to acquiring information about Earth and other planets. Remote sensing is used in numerous fields, including geophysics, geography, land surveying and most Earth science disciplines ; it also has military, intelligence, commercial, economic, planning, and humanitarian applications, among others.

Image analysis or imagery analysis is the extraction of meaningful information from images; mainly from digital images by means of digital image processing techniques. Image analysis tasks can be as simple as reading bar coded tags or as sophisticated as identifying a person from their face.

<span class="mw-page-title-main">Photogrammetry</span> Taking measurements using photography

Photogrammetry is the science and technology of obtaining reliable information about physical objects and the environment through the process of recording, measuring and interpreting photographic images and patterns of electromagnetic radiant imagery and other phenomena.

<span class="mw-page-title-main">Geoinformatics</span> Application of information science methods in geography, cartography, and geosciences

Geoinformatics is a technical science primarily within the domain of Computer Science. It focuses on the programming of applications, spatial data structures, and the analysis of objects and space-time phenomena related to the surface and underneath of Earth and other celestial bodies. The field develops software and web services to model and analyse spatial data, serving the needs of geosciences and related scientific and engineering disciplines. The term is often used interchangeably with Geomatics, although the two have distinct focuses; Geomatics emphasizes acquiring spatial knowledge and leveraging information systems, not their development.

<span class="mw-page-title-main">3D scanning</span> Scanning of an object or environment to collect data on its shape

3D scanning is the process of analyzing a real-world object or environment to collect three dimensional data of its shape and possibly its appearance. The collected data can then be used to construct digital 3D models.

Georeferencing or georegistration is a type of coordinate transformation that binds a digital raster image or vector database that represents a geographic space to a spatial reference system, thus locating the digital data in the real world. It is thus the geographic form of image registration. The term can refer to the mathematical formulas used to perform the transformation, the metadata stored alongside or within the image file to specify the transformation, or the process of manually or automatically aligning the image to the real world to create such metadata. The most common result is that the image can be visually and analytically integrated with other geographic data in geographic information systems and remote sensing software.

<span class="mw-page-title-main">GDAL</span> Translator library for raster and vector geospatial data formats

The Geospatial Data Abstraction Library (GDAL) is a computer software library for reading and writing raster and vector geospatial data formats, and is released under the permissive X/MIT style free software license by the Open Source Geospatial Foundation. As a library, it presents a single abstract data model to the calling application for all supported formats. It may also be built with a variety of useful command line interface utilities for data translation and processing. Projections and transformations are supported by the PROJ library.

A remote sensing software is a software application that processes remote sensing data. Remote sensing applications are similar to graphics software, but they enable generating geographic information from satellite and airborne sensor data. Remote sensing applications read specialized file formats that contain sensor image data, georeferencing information, and sensor metadata. Some of the more popular remote sensing file formats include: GeoTIFF, NITF, JPEG 2000, ECW, MrSID, HDF, and NetCDF.

<span class="mw-page-title-main">3D city model</span>

A 3D city model is digital model of urban areas that represent terrain surfaces, sites, buildings, vegetation, infrastructure and landscape elements in three-dimensional scale as well as related objects belonging to urban areas. Their components are described and represented by corresponding two- and three-dimensional spatial data and geo-referenced data. 3D city models support presentation, exploration, analysis, and management tasks in a large number of different application domains. In particular, 3D city models allow "for visually integrating heterogeneous geoinformation within a single framework and, therefore, create and manage complex urban information spaces."

IMAGINE Photogrammetry is a software application for performing photogrammetric operations on imagery and extracting information from imagery. IMAGINE Photogrammetry is significant because it is a leading commercial photogrammetry application that is used by numerous national mapping agencies, regional mapping authorities, various DOTs, as well as commercial mapping firms. Aside from commercial and government applications, IMAGINE Photogrammetry is widely used in academic research. Research areas include landslide monitoring, cultural heritage studies, and more.

The International Society for Photogrammetry and Remote Sensing (ISPRS) is an international non-governmental organization that enhances international cooperation between the worldwide organizations with interests in the photogrammetry, remote sensing and spatial information sciences. Originally named International Society for Photogrammetry (ISP), it was established in 1910, and is the oldest international umbrella organization in its field, which may be summarized as addressing “information from imagery”.

<span class="mw-page-title-main">Digital outcrop model</span> Digital 3D representation of the outcrop surface

A digital outcrop model (DOM), also called a virtual outcrop model, is a digital 3D representation of the outcrop surface, mostly in a form of textured polygon mesh.

<span class="mw-page-title-main">Sebastian Finsterwalder</span> Bavarian mathematician and surveyor (1862–1951)

Sebastian Finsterwalder was a German mathematician and glaciologist. Acknowledged as the "father of glacier photogrammetry"; he pioneered the use of repeat photography as a temporal surveying instrument in measurement of the geology and structure of the Alps and their glacier flows. The measurement techniques he developed and the data he produced are still in use to discover evidence for climate change.

Geographic data and information is defined in the ISO/TC 211 series of standards as data and information having an implicit or explicit association with a location relative to Earth. It is also called geospatial data and information, georeferenced data and information, as well as geodata and geoinformation.

Intrinsic localization is a method used in mobile laser scanning to recover the trajectory of the scanner, after, or during the measurement. Specifically, it is a way to recover the spatial coordinates and the rotation of the scanner without the use of any other sensors, i.e, extrinsic information. To function in practice, intrinsic localization relies on two things. First, a priori knowledge of the scanning instruments, and second, on sensor data overlap employing simultaneous localization and mapping (SLAM) methods. The term was coined in.

<span class="mw-page-title-main">Pix4D</span>

Pix4D is a Swiss software company that specializes in photogrammetry. It was founded in 2011 as a spinoff from the École Polytechnique Fédérale de Lausanne (EPFL) Computer Vision Lab in Switzerland. It develops a suite of software products that use photogrammetry and computer vision algorithms to transform DSLR, fisheye, RGB, thermal and multispectral images into 3D maps and 3D modeling. The company has 7 international offices, with its headquarters in Lausanne, Switzerland.

<span class="mw-page-title-main">Remote sensing in geology</span> Data acquisition method for earth sciences

Remote sensing is used in the geological sciences as a data acquisition method complementary to field observation, because it allows mapping of geological characteristics of regions without physical contact with the areas being explored. About one-fourth of the Earth's total surface area is exposed land where information is ready to be extracted from detailed earth observation via remote sensing. Remote sensing is conducted via detection of electromagnetic radiation by sensors. The radiation can be naturally sourced, or produced by machines and reflected off of the Earth surface. The electromagnetic radiation acts as an information carrier for two main variables. First, the intensities of reflectance at different wavelengths are detected, and plotted on a spectral reflectance curve. This spectral fingerprint is governed by the physio-chemical properties of the surface of the target object and therefore helps mineral identification and hence geological mapping, for example by hyperspectral imaging. Second, the two-way travel time of radiation from and back to the sensor can calculate the distance in active remote sensing systems, for example, Interferometric synthetic-aperture radar. This helps geomorphological studies of ground motion, and thus can illuminate deformations associated with landslides, earthquakes, etc.

Sisi Zlatanova is a Bulgarian/Dutch researcher in geospatial data, geographic information systems, and 3D modeling. She works as a professor in the faculty of the Built Environment, at the University of New South Wales (UNSW), and is president of Technical Commission IV (Spatial Information Science) of the International Society for Photogrammetry and Remote Sensing.

Geological structure measurement by LiDAR technology is a remote sensing method applied in structural geology. It enables monitoring and characterisation of rock bodies. This method's typical use is to acquire high resolution structural and deformational data for identifying geological hazards risk, such as assessing rockfall risks or studying pre-earthquake deformation signs.

References