Moder humus

Last updated
Moder humus profile in an oak forest Moder humus.jpg
Moder humus profile in an oak forest

Moder is a forest floor type formed under coniferous forests, mixed-wood and pure deciduous forests. [1] [2] Moder is a kind of humus form whose properties are the transition between mor humus and mull humus types. [3] [4] Moder is similar to mor as it is made up of partially to fully humified organic components accumulated on the mineral soil, while compared to mull, moder is zoologically active. [4] In addition, moder presents as in the middle of mor and mull with a higher decomposition capacity than mull but lower than mor. [2] Moder is characterized by a slow rate of litter decomposition by litter-dwelling organisms and fungi, leading to the accumulation of organic residues, mainly in the form of invertebrate fecal pellets. [2] Moder has been described by Franz Hartmann, midway between mull and mor and was previously described as 'insect mull'. [5]

Contents

Properties

The OF layer in a moder humus profile from a Scots pine stand. Note the numerous digit-like mycrorrhizal root tips protruding upwards within the OF horizon The OF layer in a Scots pine stand moder.jpg
The OF layer in a moder humus profile from a Scots pine stand. Note the numerous digit-like mycrorrhizal root tips protruding upwards within the OF horizon

Moder develops in semiarid, temperate, and Mediterranean climates. Moder' chemical characteristics show high acidity (low pH), total carbon, carbon-nitrogen ratio, and low cation exchange capacity, total nitrogen and base saturation. [6] Moder has a higher availability of nutrients than mor. [7] Moder is the seat of intense biological activity in the forest floor, with a superficial development of the fine root system of trees, associated with a symbiotic ectomycorrhizal mycelium circulating between the accumulated animal faeces in which fungal hyphae penetrate to capture nutrients. [8] [9]

Formation

Morder forms in deciduous forest situations when the soil has fewer bacteria and macro-invertebrates, such as earthworms, to decompose and bury the organic matter deposited on the soil surface, mainly because of high soil acidity and poor litter quality. [10] The animals responsible for the fragmentation of litter and its transformation into humus belong to the detritivorous fauna, including microarthropods (e.g. springtails, oribatid mites), macroarthropods (e.g. millipedes, woodlice, insect larvae) but also molluscs (snails, slugs) and worms (epigeic earthworms, enchytraeids). [11] The small vertical movements of epigeic worms [12] and enchytraeids [13] generate a thin A horizon, with a microgranular or particulate structure (depending on silty or sandy nature of the mineral substrate), with a diffuse transition with the overlying OH horizon. [14]

Diagnostic horizons

Succession of OL, OF, OH and A horizons in a moder humus from a beech forest: from left to right each picture is a top view of a horizon upon discarding the layer immediately above it Moder dans une hetraie.png
Succession of OL, OF, OH and A horizons in a moder humus from a beech forest: from left to right each picture is a top view of a horizon upon discarding the layer immediately above it

It is generally possible to observe four distinct horizons designated by OL, OF, OH and A. [15]

The OF horizon is used to distinguish moder. [6] This layer is mostly made up of partially decomposed plant remains broken or comminuted by soil fauna and loosely organized rather than matted. [2] However, an abundance of fine roots can sometimes result in a matted appearance. [17] A distinctive aspect of the OF horizon and its loose nature is the abundance of soil animal droppings, which can be seen with the aid of a hand lens. [2] Millipedes, springtails, oribatid mites, woodlice, and various insect larvae all excrete these droppings. [2] The fragmentation of plant residues by soil fauna facilitates a faster rate of microbial decomposition. [18] Bacteria, actinomycetes, and protozoa are progressively contributing to the breakdown process, although fungi play a more important role than other microorganisms in moder humus layers, at least to the exception of the A horizon. [19]

Classification

In the British Columbian classification of humus forms, Moder is subdivided in Velomoder, Xeromoder, Mormoder and Leptomoder for well-aerated (terrestrial) humus forms, and Mullmoder, Hydromoder and Histomoder for poorly aerated (semi-terrestrial) humus forms. [2]

In the French classification of humus forms, Moder is subdivided in Hemimoder, Eumoder and Dysmoder. [20]

In HUMUSICA, a worldwide classification of humus forms, Moder is considered as a humus system (abbreviation of humus interaction system) and subdivided in Hemimoder, Eumoder, and Dysmoder as humus forms. [21] They exhibit the following morphological characteristics:

The gradient of increasing contribution of organic layers to the humus profile, from Hemimoder to Dysmoder, has been included in a numerical scale covering all lowland terrestrial humus forms, called Humus Index. The Humus Index is an ordinal scale which can be rank correlated with other parameters measured on soil or vegetation, and thus can be used as an indicator of soil health or forest stand development. It has been shown to covary with soil fertility, [22] forest management type and tree age, [23] pollution level, [24] and plant species richness. [25]

References

  1. Zanella, Augusto; Ponge, Jean-François; Jabiol, Bernard; Sartori, Giacomo; Kolb, Eckart; Le Bayon, Renée-Claire; Gobat, Jean-Michel; Aubert, Michaël; De Waal, Rein; Van Delft, Bas; Vacca, Andrea; Serra, Gianluca; Chersich, Silvia; Andreetta, Anna; Kõlli, Raimo; Brun, Jean-Jacques; Cools, Nathalie; Englisch, Michael; Hager, Herbert; Katzensteiner, Klaus; Brêthes, Alain; De Nicola, Cristina; Testi, Anna; Bernier, Nicolas; Graefe, Ulfert; Wolf, Ugo; Juilleret, Jérôme; Garlato, Andrea; Obber, Silvia; Galvan, Paola; Zampedri, Roberto; Frizzera, Lorenzo; Tomasi, Mauro; Banas, Damien; Bureau, Fabrice; Tatti, Dylan; Salmon, Sandrine; Menardi, Roberto; Fontanella, Fausto; Carraro, Vinicio; Pizzeghello, Diego; Concheri, Giuseppe; Squartini, Andrea; Cattaneo, Dina; Scattolin, Linda; Nardi, Serenella; Nicolini, Gianni; Viola, Franco (January 2018). "Terrestrial humus systems and forms: keys of classification of humus systems and forms". Applied Soil Ecology. 122 (Part 1): 75–86. doi:10.1016/j.apsoil.2017.06.012 . Retrieved 21 October 2025.
  2. 1 2 3 4 5 6 7 Klinka, Karel; Green, R. N.; Trowbridge, R. L.; Lowe, L.E (1981). Taxonomic classification of humus forms in ecosystems of British Columbia: first approximation (PDF). Vancouver, British Columbia: Ministry of Forests, Province of British Columbia. Retrieved 21 October 2025.
  3. "Humus". Encyclopedia Britannica. Retrieved 21 October 2025.
  4. 1 2 "Humus forms" . Retrieved 21 October 2025.
  5. Hartmann, Franz (1944). "Waldhumusformen". Zeitschrift für das Gesamte Forstwesen. 76: 39–70. Retrieved 13 October 2025.
  6. 1 2 "Orders". Forest Floors. Retrieved 21 October 2025.
  7. Ponge, Jean-François (July 2003). "Humus forms in terrestrial ecosystems: a framework to biodiversity". Soil Biology and Biochemistry . 35 (7): 935–45. Bibcode:2003SBiBi..35..935P. doi:10.1016/S0038-0717(03)00149-4. S2CID   44160220 . Retrieved 21 October 2025.
  8. Ponge, Jean-François (November 1990). "Ecological study of a forest humus by observing a small volume. I. Penetration of pine litter by mycorrhizal fungi". European Journal of Forest Pathology. 20 (5): 290–303. Bibcode:1990FoPat..20..290P. doi:10.1111/j.1439-0329.1990.tb01141.x . Retrieved 10 October 2025.
  9. Read, David J.; Perez-Moreno, Jesus (March 2003). "Mycorrhizas and nutrient cycling in ecosystems: a journey towards relevance?". New Phytologist . 157 (3): 475–92. Bibcode:2003NewPh.157..475R. doi: 10.1046/j.1469-8137.2003.00704.x . PMID   33873410.
  10. Ponge, Jean-François (February 2013). "Plant-soil feedbacks mediated by humus forms: a review". Soil Biology and Biochemistry . 57: 1048–60. Bibcode:2013SBiBi..57.1048P. doi:10.1016/j.soilbio.2012.07.019. S2CID   84606515 . Retrieved 16 October 2025.
  11. Schaefer, Matthias; Schauermann, Jürgen (1990). "The soil fauna of beech forests: comparison between a mull and a moder soil". Pedobiologia. 34 (5): 299–314. Bibcode:1990Pedob..34..299S. doi:10.1016/S0031-4056(24)00031-3 . Retrieved 10 October 2025.
  12. Dymond, Pamela; Scheu, Stefan; Parkinson, Dennis (March–April 1997). "Density and distribution of Dendrobaena octaedra (Lumbricidae) in aspen and pine forests in the Canadian Rocky Mountains (Alberta)". Soil Biology and Biochemistry . 29 (3–4): 265–73. Bibcode:1997SBiBi..29..265D. doi:10.1016/S0038-0717(96)00052-1 . Retrieved 10 October 2025.
  13. Springett, Josephine A.; Brittain, John Edward; Springett, Brian Peter (1970). "Vertical movement of Enchytraeidae (Oligochaeta) in moorland soils". Oikos. 21 (1): 16–21. Bibcode:1970Oikos..21...16S. doi:10.2307/3543833. JSTOR   3543833 . Retrieved 10 October 2025.
  14. Galvan, Paola; Ponge, Jean-François; Chersich, Silvia; Zanella, Augusto (March 2008). "Humus components and soil biogenic structures in Norway spruce ecosystems". Soil Science Society of America Journal . 72 (2): 548–57. Bibcode:2008SSASJ..72..548G. doi:10.2136/sssaj2006.0317. hdl:11577/2270530 . Retrieved 10 October 2025.
  15. Zanella, Augusto; Ponge, Jean-François; Jabiol, Bernard; Sartori, Giacomo; Kolb, Eckart; Gobat, Jean-Michel; Le Bayon, Renée-Claire; Aubert, Michaël; De Waal, Rein; Van Delft, Bas; Vacca, Andrea; Serra, Gianluca; Chersich, Silvia; Andreetta, Anna; Cools, Nathalie; Englisch, Michael; Hager, Herbert; Katzensteiner, Klaus; Brêthes, Alain; De Nicola, Cristina; Testi, Anna; Bernier, Nicolas; Graefe, Ulfert; Juilleret, Jérôme; Banas, Damien; Garlato, Adriano; Obber, Silvia; Galvan, Paola; Zampedri, Roberto; Frizzera, Lorenzo; Tomasi, Mauro; Menardi, Roberto; Fontanella, Fausto; Filoso, Carmen; Dibona, Raffaella; Bolzonella, Cristian; Pizzeghello, Diego; Carletti, Paolo; Langohr, Roger; Cattaneo, Dina; Nardi, Serenella; Nicolini, Gianni; Viola, Franco (January 2018). "Terrestrial humus systems and forms: specific terms and diagnostic horizons". Applied Soil Ecology. 122 (Part 1): 56–74. doi:10.1016/j.apsoil.2017.07.005 . Retrieved 17 October 2025.
  16. Ponge, Jean-François (November 1999). "Horizons and humus forms in beech forests of the Belgian Ardennes". Soil Science Society of America Journal . 63 (6): 1888–901. Bibcode:1999SSASJ..63.1888P. doi: 10.2136/sssaj1999.6361888x .
  17. Loranger, Gladys; Ponge, Jean-François; Lavelle, Patrick (March 2003). "Humus forms in two secondary semi-evergreen tropical forests". European Journal of Soil Science. 54 (1): 17–24. Bibcode:2003EuJSS..54...17L. doi:10.1046/j.1365-2389.2003.00500.x . Retrieved 21 October 2025.
  18. Robertson, G. Philip; Paul, Eldor A. (2000). "Decomposition and soil organic matter dynamics". In Sala, Osvaldo E.; Jackson, Robert B.; Mooney, Harold A.; Howarth, Robert W. (eds.). Methods in ecosystem science. New York, New York: Springer. pp. 104–16. doi:10.1007/978-1-4612-1224-9_8. ISBN   978-1-4612-1224-9 . Retrieved 21 October 2025.
  19. Trap, Jean; Laval, Karine; Akpa-Vinceslas, Marthe; Gangneux, Christophe; Bureau, Fabrice; Decaëns, Thibaud; Aubert, Michaël (July 2011). "Humus macro-morphology and soil microbial community changes along a 130-yr-old Fagus sylvatica chronosequence". Soil Biology and Biochemistry . 43 (7): 1553–62. Bibcode:2011SBiBi..43.1553T. doi:10.1016/j.soilbio.2011.04.005 . Retrieved 21 October 2025.
  20. Brêthes, Alain; Brun, Jean-Jacques; Jabiol, Bernard; Ponge, Jean-François; Toutain, François (1995). "Classification of forest humus forms: a French proposal". Annales des Sciences Forestières. 52 (6): 535–46. doi: 10.1051/forest:19950602 .
  21. Zanella, Augusto; Ponge, Jean-François; Jabiol, Bernard; Sartori, Giacomo; Kolb, Eckart; Le Bayon, Renée-Claire; Gobat, Jean-Michel; Aubert, Michaël; De Waal, Rein; Van Delft, Bas; Vacca, Andrea; Serra, Gianluca; Chersich, Silvia; Andreetta, Anna; Kõlli, Raimo; Brun, Jean-Jacques; Cools, Nathalie; Englisch, Michael; Hager, Herbert; Katzensteiner, Klaus; Brêthes, Alain; De Nicola, Cristina; Testi, Anna; Bernier, Nicolas; Graefe, Ulfert; Wolf, Ugo; Juilleret, Jérôme; Garlato, Andrea; Obber, Silvia; Galvan, Paola; Zampedri, Roberto; Frizzera, Lorenzo; Tomasi, Mauro; Banas, Damien; Bureau, Fabrice; Tatti, Dylan; Salmon, Sandrine; Menardi, Roberto; Fontanella, Fausto; Carraro, Vinicio; Pizzeghello, Diego; Concheri, Giuseppe; Squartini, Andrea; Cattaneo, Dina; Scattolin, Linda; Nardi, Serenella; Nicolini, Gianni; Viola, Franco (January 2018). "Terrestrial humus systems and forms: keys of classification of humus systems and forms". Applied Soil Ecology. 122 (Part 1): 75–86. doi:10.1016/j.apsoil.2017.06.012 . Retrieved 10 October 2025.
  22. Ponge, Jean-François; Chevalier, Richard; Loussot, Phiippe (November 2002). "Humus Index: an integrated tool for the assessment of forest floor and topsoil properties". Soil Science Society of America Journal . 66 (6): 1996–2001. doi:10.2136/sssaj2002.1996 . Retrieved 22 October 2025.
  23. Ponge, Jean-François; Chevalier, Richard (1 September 2006). "Humus Index as an indicator of forest stand and soil properties". Forest Ecology and Management . 233 (1): 165–75. Bibcode:2006ForEM.233..165P. doi:10.1016/j.foreco.2006.06.022 . Retrieved 22 October 2025.
  24. Korkina, Irina N.; Vorobeichik, Evguenii L. (February 2018). "Humus Index as an indicator of the topsoil response to the impacts of industrial pollution". Applied Soil Ecology. 123: 455–63. Bibcode:2018AppSE.123..455K. doi:10.1016/j.apsoil.2017.09.025 . Retrieved 22 October 2025.
  25. Lalanne, Arnault; Bardat, Jacques; Lalanne-Amara, Fouzia; Gautrot, Thierry; Ponge, Jean-François (October 2008). "Opposite responses of vascular plant and moss communities to changes in humus form, as expressed by the Humus Index". Journal of Vegetation Science. 19 (5): 645–52. Bibcode:2008JVegS..19..645L. doi:10.3170/2007-8-18431 . Retrieved 17 October 2025.