This article needs additional citations for verification .(February 2012) |
The forest floor, also called detritus or duff, is the part of a forest ecosystem that mediates between the living, aboveground portion of the forest and the mineral soil, principally composed of dead and decaying plant matter such as rotting wood and shed leaves. [1] In some countries, like Canada, forest floor refers to L, F and H organic horizons. [2] It hosts a wide variety of decomposers [3] and predators, including invertebrates, fungi, algae, bacteria, and archaea.
The forest floor serves as a bridge between the above ground living vegetation and the soil, and thus is a crucial component in nutrient transfer through the biogeochemical cycle. Leaf litter and other plant litter transmits nutrients from plants to the soil. [4] The plant litter of the forest floor (or L horizon) prevents erosion, conserves moisture, and provides nutrients to the entire ecosystem. [5] The F horizon consists of plant material in which decomposition is apparent, but the origins of plant residues are still distinguishable. [2] The H horizon consists of well-decomposed plant material so that plant residues are not recognizable, with the exception of some roots or wood. [2]
The nature of the distinction between organisms "in" the soil and components "of" the soil is disputed, with some questioning whether such a distinction exists at all. [6] The majority of carbon storage and biomass production in forests occurs below ground. [7] Despite this, conservation policy and scientific study tends to neglect the below-ground portion of the forest ecosystem. [8] As a crucial part of soil and the below-ground ecosystem, [9] the forest floor profoundly impacts the entire forest.
Much of the energy and carbon fixed by forests is periodically added to the forest floor through litterfall, and a substantial portion of the nutrient requirements of forest ecosystems is supplied by decomposition of organic matter in the forest floor and soil surface. Decomposers, such as arthropods and fungi, are necessary for the transformation of dead organic matter to usable nutrients. The sustained productivity of forests is closely linked with the decomposition of shed plant parts, particularly the nutrient-rich foliage. The forest floor is also an important fuel source in forest fires.
The amount of material in the forest floor depends on the balance between inputs from litter production and outputs from decomposition, and amounts also reflect the site's disturbance history. Both litter production and decomposition are functions of the site (e.g., wet versus dry; cold versus warm; nutrient rich versus nutrient poor) and the vegetation that occupies the site (e.g., conifer versus broadleaf). A site's forest floor is determined by its areal weight, depth, and nutrient content. Typically, forest floors are heaviest and deepest in boreal forests and mountain forests where decomposition rates are slow. In contrast, the lightest and thinnest forest floors usually occur in tropical forests where decomposition rates are rapid, except on white sands where nutrients could not be supplied from mineral weathering. [ citation needed ]
The organic layer is divided into three layers: on the surface is the leaf litter formed by undecomposed vegetable matter; underneath is humus which is the product of decomposed vegetable matter. Between litter and humus is a partially decomposed layer of organic matter ("F: fragmented organic materials"). [10] [11] Some specialists consider this zone to be equivalent to the soil horizon (O) whereas for others, this only includes the humus and the intermediate layer, excluding the litter. Woodland plants that inhabit this zone often have bulbs or rhizomes and include ferns such as bracken, monocots such as bluebells and dog's mercury.[ citation needed ]
In tropical rain forests, the soil itself is often very poor, in contrast to the soils of temperate forests which store nutrients in soil. The lush vegetation is made possible by the abundance and rapid action of termites, millipedes and other organisms, which break down organic matter and promptly consign it to the mycorrhizal network. [12] Therefore, the leaf litter layer of tropical forests may be considerably less apparent, or virtually absent at certain times of the year. With up to three defined canopy layers above, relatively low levels of sunlight (as little as 2%) reach here. [13] Examples of the wide range of plants adapted to this zone include: spike mosses, gingers and the parasitic Rafflesia spp.
In classical soil science, humus is the dark organic matter in soil that is formed by the decomposition of plant and animal matter. It is a kind of soil organic matter. It is rich in nutrients and retains moisture in the soil. Humus is the Latin word for "earth" or "ground".
Soil, also commonly referred to as earth, is a mixture of organic matter, minerals, gases, liquids, and organisms that together support the life of plants and soil organisms. Some scientific definitions distinguish dirt from soil by restricting the former term specifically to displaced soil.
Decomposers are organisms that break down dead organisms and release the nutrients from the dead matter into the environment around them. Decomposition relies on chemical processes similar to digestion in animals; in fact, many sources use the words digestion and decomposition interchangeably. In both processes, complex molecules are chemically broken down by enzymes into simpler, smaller ones. The term "digestion," however, is commonly used to refer to food breakdown that occurs within animal bodies, and results in the absorption of nutrients from the gut into the animal's bloodstream. This is contrasted with external digestion, meaning that, rather than swallowing food and then digesting it using enzymes located within a GI tract, an organism instead releases enzymes directly onto the food source. After allowing the enzymes time to digest the material, the decomposer then absorbs the nutrients from the environment into its cells. Decomposition is often erroneously conflated with this process of external digestion, probably because of the strong association between fungi, which are external digesters, and decomposition.
El_Yunque_National_Forest
Organic matter, organic material, or natural organic matter refers to the large source of carbon-based compounds found within natural and engineered, terrestrial, and aquatic environments. It is matter composed of organic compounds that have come from the feces and remains of organisms such as plants and animals. Organic molecules can also be made by chemical reactions that do not involve life. Basic structures are created from cellulose, tannin, cutin, and lignin, along with other various proteins, lipids, and carbohydrates. Organic matter is very important in the movement of nutrients in the environment and plays a role in water retention on the surface of the planet.
In biology, detritus is organic matter made up of the decomposing remains of organisms and plants, and also of feces. Detritus usually hosts communities of microorganisms that colonize and decompose (remineralise) it. Such microorganisms may be decomposers, detritivores, or coprophages.
Soil biology is the study of microbial and faunal activity and ecology in soil. Soil life, soil biota, soil fauna, or edaphon is a collective term that encompasses all organisms that spend a significant portion of their life cycle within a soil profile, or at the soil-litter interface. These organisms include earthworms, nematodes, protozoa, fungi, bacteria, different arthropods, as well as some reptiles, and species of burrowing mammals like gophers, moles and prairie dogs. Soil biology plays a vital role in determining many soil characteristics. The decomposition of organic matter by soil organisms has an immense influence on soil fertility, plant growth, soil structure, and carbon storage. As a relatively new science, much remains unknown about soil biology and its effect on soil ecosystems.
Soil ecology studies interactions among soil organisms, and their environment. It is particularly concerned with the cycling of nutrients, soil aggregate formation and soil biodiversity.
Soil carbon is the solid carbon stored in global soils. This includes both soil organic matter and inorganic carbon as carbonate minerals. It is vital to the soil capacity in our ecosystem. Soil carbon is a carbon sink in regard to the global carbon cycle, playing a role in biogeochemistry, climate change mitigation, and constructing global climate models. Microorganisms play an important role in breaking down carbon in the soil. Changes in their activity due to rising temperatures could possibly influence and even contribute to climate change. Human activities have caused a massive loss of soil organic carbon. For example, anthropogenic fires destroy the top layer of the soil, exposing soil to excessive oxidation.
Plant litter is dead plant material that have fallen to the ground. This detritus or dead organic material and its constituent nutrients are added to the top layer of soil, commonly known as the litter layer or O horizon. Litter is an important factor in ecosystem dynamics, as it is indicative of ecological productivity and may be useful in predicting regional nutrient cycling and soil fertility.
Invasive species of earthworms from the suborder Lumbricina have been expanding their range in North America. Earthworms are considered one of the most abundant macroinvertebrates in the soil of ecosystems in temperate and tropical climates. There are around 3,000 species known worldwide. They are considered keystone species in their native habitats of Asia and Europe because, as detritivores, they alter many different variables of their ecosystem. Their introduction to North America has had marked effects on the nutrient cycles and soil profiles in temperate forests. These earthworms increase the cycling and leaching of nutrients by breaking up decaying organic matter and spreading it into the soil. This thins out the soil rapidly because earthworms do not require a mate to reproduce, allowing them to spread fast. Since plants native to these northern forests are evolutionarily adapted to the presence of thick layers of decaying organic matter, the introduction of worms can lead to a loss of biodiversity as young plants face less nutrient-rich conditions. Some species of trees and other plants may be incapable of surviving such changes in available nutrients. This change in the plant diversity in turn affects other organisms and often leads to increased invasions of other exotic species as well as overall forest decline. They are considered one of the most invasive animals in the Midwestern United States along with feral swine.
Monodominance is an ecological condition in which more than 60% of the tree canopy comprises a single species of tree. Monodominant forests are quite common under conditions of extra-tropical climate types. Although monodominance is studied across different regions, most research focuses on the many prominent species in tropical forests. Connel and Lowman, originally called it single-dominance. Conventional explanations of biodiversity in tropical forests in the decades prior to Connel and Lowman's work either ignored monodominance entirely or predicted that it would not exist.
Soil carbon storage is an important function of terrestrial ecosystems. Soil contains more carbon than plants and the atmosphere combined. Understanding what maintains the soil carbon pool is important to understand the current distribution of carbon on Earth, and how it will respond to environmental change. While much research has been done on how plants, free-living microbial decomposers, and soil minerals affect this pool of carbon, it is recently coming to light that mycorrhizal fungi—symbiotic fungi that associate with roots of almost all living plants—may play an important role in maintaining this pool as well. Measurements of plant carbon allocation to mycorrhizal fungi have been estimated to be 5 to 20% of total plant carbon uptake, and in some ecosystems the biomass of mycorrhizal fungi can be comparable to the biomass of fine roots. Recent research has shown that mycorrhizal fungi hold 50 to 70 percent of the total carbon stored in leaf litter and soil on forested islands in Sweden. Turnover of mycorrhizal biomass into the soil carbon pool is thought to be rapid and has been shown in some ecosystems to be the dominant pathway by which living carbon enters the soil carbon pool.
An ectomycorrhiza is a form of symbiotic relationship that occurs between a fungal symbiont, or mycobiont, and the roots of various plant species. The mycobiont is often from the phyla Basidiomycota and Ascomycota, and more rarely from the Zygomycota. Ectomycorrhizas form on the roots of around 2% of plant species, usually woody plants, including species from the birch, dipterocarp, myrtle, beech, willow, pine and rose families. Research on ectomycorrhizas is increasingly important in areas such as ecosystem management and restoration, forestry and agriculture.
Ectomycorrhizal extramatrical mycelium is the collection of filamentous fungal hyphae emanating from ectomycorrhizas. It may be composed of fine, hydrophilic hypha which branches frequently to explore and exploit the soil matrix or may aggregate to form rhizomorphs; highly differentiated, hydrophobic, enduring, transport structures.
A sand forest is a type of rare subtropical forest region, distinctive due to its unique combination of plant and animal species, and their restriction to ancient coastal dunes. Sand forests are found in Maputaland in South Africa, as well as parts of the Amazon basin in Brazil, Peru, and Colombia, along with Malaysia and Indonesia in Asia.
Seventeen elements or nutrients are essential for plant growth and reproduction. They are carbon (C), hydrogen (H), oxygen (O), nitrogen (N), phosphorus (P), potassium (K), sulfur (S), calcium (Ca), magnesium (Mg), iron (Fe), boron (B), manganese (Mn), copper (Cu), zinc (Zn), molybdenum (Mo), nickel (Ni) and chlorine (Cl). Nutrients required for plants to complete their life cycle are considered essential nutrients. Nutrients that enhance the growth of plants but are not necessary to complete the plant's life cycle are considered non-essential, although some of them, such as silicon (Si), have been shown to improve nutrent availability, hence the use of stinging nettle and horsetail macerations in Biodynamic agriculture. With the exception of carbon, hydrogen and oxygen, which are supplied by carbon dioxide and water, and nitrogen, provided through nitrogen fixation, the nutrients derive originally from the mineral component of the soil. The Law of the Minimum expresses that when the available form of a nutrient is not in enough proportion in the soil solution, then other nutrients cannot be taken up at an optimum rate by a plant. A particular nutrient ratio of the soil solution is thus mandatory for optimizing plant growth, a value which might differ from nutrient ratios calculated from plant composition.
Mor humus is a form of forest floor humus occurring mostly in coniferous forests. Mor humus consists of evergreen needles and woody debris that litter the forest floor. This litter is slow to decompose, in part due to their chemical composition, but also because of the generally cool and wet conditions where mor humus is found. This results in low bacterial activity and an absence of earthworms and other soil fauna. Because of this, most of the organic matter decomposition in mor humus is carried out by fungi.
Moder is a forest floor type formed under mixed-wood and pure deciduous forests. Moder is a kind of humus whose properties are the transition between mor humus and mull humus types. Moders are similar to mors as they are made up of partially to fully humified organic components accumulated on the mineral soil. Compared to mulls, moders are zoologically active. In addition, moders present as in the middle of mors and mulls with a higher decomposition capacity than mull but lower than mor. Moders are characterized by a slow rate of litter decomposition by litter-dwelling organisms and fungi, leading to the accumulation of organic residues. Moder humus forms share the features of the mull and mor humus forms.
The term humus form is not the same as the term humus. Forest humus form describes the various arrangement of organic and mineral horizons at the top of soil profiles. It can be composed entirely of organic horizons, meaning an absence of the mineral horizon. Experts worldwide have developed different types of classifications over time, and humus forms are mainly categorized into mull, mor, and moder orders in the ecosystems of British Columbia. Mull humus form is distinguishable from the other two forms in formation, nutrient cycling, productivity, etc.