Mor humus

Last updated
Horizon levels of Mor humus and the soil below Mor humus Diagram.png
Horizon levels of Mor humus and the soil below

Mor is a humus form occurring mostly in coniferous forests and ericaceous heathlands. [1] [2] [3] Mor humus consists of evergreen needles, ericaceous twigs and foliage and woody debris that litter the forest floor. This litter is slow to decompose, in part due to its chemical composition (low pH, low nutrient content, high lignin, tannin or terpenic content), [4] but also because of the generally cool and wet conditions where mor humus is found. [5] This results in low bacterial activity and an absence of earthworms and a low presence of other soil fauna. [6] Because of this, most of the organic matter decomposition in mor humus is carried out by fungi. [7]

Contents

Mor humus is one of three current classifications of forest floor humus, along with Moder and Mull. Each class corresponds to a scale of increasingly colder conditions, decreasing biological diversity and activity, and decreasing nutrient availability. [5] Mor humus ranks at the bottom of this scale and is characterized by very slow decomposition and accumulation of plant material. [6] In the seminal work of Peter Erasmus Müller on Danish forest soils, which described mor for the first time, this humus form was called beech peat by analogy with sphagnum peat. [8]

Morpho-functional features

Mor humus has three distinct organic horizons: an OL horizon (litter horizon), atop an OF horizon (fermentation horizon), followed by a more or less thick (sometimes absent) OH horizon (humus horizon), before a sharp transition to the mineral soil (E horizon). [9]

The OL horizon is very thick and is made up of undecomposed organic material. In coniferous forests the litter is composed primarily of evergreen needles, conifer cones, and woody debris. [10] In ericaceous heaths the litter is composed of ericaceous leaves and twigs, included in a dense network of subterranean rhizomes growing more or less horizontally through the forest floor. [11] In the OL horizon of mor, living (green) and dead (brown) parts of mosses are often associated with coniferous needles, which do not shade out mosses, [12] contrary to deciduous leaves. [13]

The OF horizon below consists of plant remains still in varying degrees of decomposition. A layered and compact-matted structure caused by the interweaving of plant roots and fungal hyphae make up the fermentation layer, with a very weak contribution of animal faeces, [14] contrary to the OF horizon of moder. [15] Through their distinct yellow and white coloration, the fungal hyphae in this horizon are identifiable as cellulose-decomposing fungi, which are the primary decomposers of organic matter in mor humus, and ectomycorrhizal fungi (with conifers) and ericoid mycorrhizal fungi (with Ericaceae) which contribute to nitrogen uptake and transfer to their host plant, and act as a sink for carbon. [16] [17] The plant roots present further contribute more organic residues through exudation. [18]

The OH horizon is composed of humified plant material, resulting from the slow and incomplete process of fungal decomposition. [19] There is very little blending of material between the humus layer and the mineral soil below resulting in the poor content in organic matter in the top mineral soil horizon. [20]

Rather than being intimately mixed (clay, silt) or juxtaposed (sand) with mineral particles, like in the A horizon of mull or moder, organic matter, either in colloidal or dissolved form (DOC), is leached (eluviated) through the E horizon until deposited (illuviated) below in the B horizon, a process typical of podzolization. [21] Despite of the clear distinction between Mor and all other humus forms stemming from the absence of an A horizon and the sharp transition from the forest floor to the mineral soil, mor and moder (in particular Dysmoder) were often confused under the designation of raw humus , embracing a wide variety of variants, from poorly to highly biologically active. [22]

Formation

Compared to the litter of deciduous forests, evergreen needles have relatively low nutrient content and a much lower pH. [23] This makes mor humus acidic to very acidic in nature. [24] In coniferous forests and ericaceous heaths, foliage litter can also contain high concentrations of tannins and terpenes. [25] [26] Tannins protect vegetation from insects attacks [27] and infections [28] and reduce soil pH. [29] All of these factors result in mor humus being an undesirable habitat for soil fauna. [30] [31] Soil bacteria are also unable to metabolize organic matter efficiently when pH is low. [32] Consequently, the majority of decomposition in mor humus is performed by soil fungi. [33]

Nutrient availability

The high volume of undecomposed organic matter in the OF horizon of mor humus leads to a high C:N ratio and can immobilize important plant nutrients such as nitrogen. [34] The high C:N and C:P ratios of mor humus slow the release of nutrients available to plants, [35] restricting in turn plant development [36] and favouring the production of a nutrient-poor litter, [37] thus closing the feed-back loop between humus and vegetation. [38] Far from being improper to plant growth and soil life and needing to be improved by fertiization, mor humus with its short food chains should be considered as the best ecological strategy by which plants, animals and microbes cope with the harsh environmental or nutritional conditions associated with high altitude, high latitude or nutrient-poor geological substrates (e.g. quartz sand, quartzite). [6]

Classification

In the British Columbian classification of humus forms, Mor is subdivided in Velomor, Xeromor, Hemimor, Hemihumimor, and Humimor for well-aerated (terrestrial) humus forms, and Hydromor and Histomor for poorly aerated (semi-terrestrial) humus forms. [2]

In HUMUSICA, a worldwide classification of humus forms, Mor is considered as a humus system (abbreviation of humus interaction system) and subdivided in Hemimor, Eumor, and Humimor as humus forms. [39] They exhibit the following morphological characteristics:

See also

References

  1. Zanella, Augusto; Ponge, Jean-François; Jabiol, Bernard; Sartori, Giacomo; Kolb, Eckart; Le Bayon, Renée-Claire; Gobat, Jean-Michel; Aubert, Michaël; De Waal, Rein; Van Delft, Bas; Vacca, Andrea; Serra, Gianluca; Chersich, Silvia; Andreetta, Anna; Kõlli, Raimo; Brun, Jean-Jacques; Cools, Nathalie; Englisch, Michael; Hager, Herbert; Katzensteiner, Klaus; Brêthes, Alain; De Nicola, Cristina; Testi, Anna; Bernier, Nicolas; Graefe, Ulfert; Wolf, Ugo; Juilleret, Jérôme; Garlato, Andrea; Obber, Silvia; Galvan, Paola; Zampedri, Roberto; Frizzera, Lorenzo; Tomasi, Mauro; Banas, Damien; Bureau, Fabrice; Tatti, Dylan; Salmon, Sandrine; Menardi, Roberto; Fontanella, Fausto; Carraro, Vinicio; Pizzeghello, Diego; Concheri, Giuseppe; Squartini, Andrea; Cattaneo, Dina; Scattolin, Linda; Nardi, Serenella; Nicolini, Gianni; Viola, Franco (January 2018). "Terrestrial humus systems and forms: keys of classification of humus systems and forms". Applied Soil Ecology. 122 (Part 1): 75–86. doi:10.1016/j.apsoil.2017.06.012 . Retrieved 21 October 2025.
  2. 1 2 Klinka, Karel; Green, R. N.; Trowbridge, R. L.; Lowe, L.E (1981). Taxonomic classification of humus forms in ecosystems of British Columbia: first approximation (PDF). Vancouver, British Columbia: Ministry of Forests, Province of British Columbia. Retrieved 21 October 2025.
  3. Wilson, Scott McG.; Pyatt, D. Graham; Malcolm, Douglas C.; Connolly, Tom (15 January 2001). "The use of ground vegetation and humus type as indicators of soil nutrient regime for an ecological site classification of British forests". Forest Ecology and Management . 140 (2–3): 101–16. Bibcode:2001ForEM.140..101W. doi:10.1016/S0378-1127(00)00318-2 . Retrieved 21 October 2025.
  4. Sjöberg, Gudrun; Knicker, Heike; Nilsson, Sven Ingvar; Berggren, Dan (April 2004). "Impact of long-term N fertilization on the structural composition of spruce litter and mor humus". Soil Biology and Biochemistry . 36 (4): 609–18. Bibcode:2004SBiBi..36..609S. doi:10.1016/j.soilbio.2003.11.006 . Retrieved 23 October 2025.
  5. 1 2 Ponge, Jean-François; Jabiol, Bernard; Gégout, Jean-Claude (15 April 2011). "Geology and climate conditions affect more humus forms than forest canopies at large scale in temperate forests". Geoderma. 162 (1–2): 187–95. Bibcode:2011Geode.162..187P. doi:10.1016/j.geoderma.2011.02.003 . Retrieved 23 October 2025.
  6. 1 2 3 Ponge, Jean-François (July 2003). "Humus forms in terrestrial ecosystems: a framework to biodiversity". Soil Biology and Biochemistry . 35 (7): 935–45. Bibcode:2003SBiBi..35..935P. doi:10.1016/S0038-0717(03)00149-4 . Retrieved 23 October 2025.
  7. Fierer, Noah; Strickland, Michael S.; Liptzin, Daniel; Bradford, Mark A.; Cleveland, Cory C. (November 2009). "Global patterns in belowground communities". Ecology Letters . 12 (11): 1238–49. Bibcode:2009EcolL..12.1238F. doi:10.1111/j.1461-0248.2009.01360.x. PMID   19674041 . Retrieved 24 October 2025.
  8. Müller, Peter Erasmus (1879). "Studier over Skovjord: som bidrag til skovdyrkningens theori. I. Om bøgemuld og bøgemor på sand og ler". Tidsskrift for Skovbrug. 3: 1–124. Retrieved 13 October 2025.
  9. Brêthes, Alain; Brun, Jean-Jacques; Jabiol, Bernard; Ponge, Jean-François; Toutain, François (1995). "Classification of forest humus forms: a French proposal". Annales des Sciences Forestières. 52 (6): 535–46. doi: 10.1051/forest:19950602 .
  10. Tian, Xing-Jun; Takeda, Hiroshi; Ando, Tatsuo (December 1997). "Application of a rapid thin section method for observations on decomposing litter in mor humus form in a subalpine coniferous forest". Ecological Research. 12 (3): 289–300. Bibcode:1997EcoR...12..289T. doi:10.1007/BF02529458 . Retrieved 24 October 2025.
  11. Maubon, Michel; Ponge, Jean-François; André, Jean (June 1995). "Dynamics of Vaccinium myrtillus patches in mountain spruce forest". Journal of Vegetation Science. 6 (3): 343–8. Bibcode:1995JVegS...6..343M. doi:10.2307/3236233. JSTOR   3236233 . Retrieved 24 October 2025.
  12. Hågvar, Sigmund (25 August 2016). "From litter to humus in a Norwegian spruce forest: long-term studies on the decomposition of needles and cones". Forests. 7 (9) 186. Bibcode:2016Fore....7..186H. doi: 10.3390/f7090186 .
  13. Startsev, Natalia; Lieffers, Victor J.; Landhäusser, Simon M. (April 2008). "Effects of leaf litter on the growth of boreal feather mosses: implication for forest floor development". Journal of Vegetation Science. 19 (2): 253–60. Bibcode:2008JVegS..19..253N. doi:10.3170/2008-8-18367 . Retrieved 24 October 2025.
  14. Frak, Elzbieta; Ponge, Jean-François (February 2002). "The influence of altitude on the distribution of subterranean organs and humus components in Vaccinium myrtillus carpets". Journal of Vegetation Science. 13 (1): 17–26. Bibcode:2002JVegS..13...17F. doi:10.1111/j.1654-1103.2002.tb02019.x . Retrieved 24 October 2025.
  15. Bal, L. (June 1970). "Morphological investigation in two moder-humus profiles and the role of the soil fauna in their genesis". Geoderma. 4 (1): 5–36. Bibcode:1970Geode...4....5B. doi:10.1016/0016-7061(70)90030-3 . Retrieved 24 October 2025.
  16. Högberg, Mona N.; Skyllberg, Ulf; Högberg, Peter; Knicker, Heike (January 2020). "Does ectomycorrhiza have a universal key role in the formation of soil organic matter in boreal forests?". Soil Biology and Biochemistry . 140 107635. Bibcode:2020SBiBi.14007635H. doi:10.1016/j.soilbio.2019.107635 . Retrieved 24 October 2025.
  17. Ward, Elisabeth B.; Duguid, Marlyse C.; Kuebbing, Sara E.; Lendemer, James C.; Bradford, Mark A. (September 2022). "The functional role of ericoid mycorrhizal plants and fungi on carbon and nitrogen dynamics in forests". New Phytologist . 235 (5): 1701–18. Bibcode:2022NewPh.235.1701W. doi: 10.1111/nph.18307 . PMID   35704030.
  18. Pumpanen, Jukka; Lindén, Aki; Brukman, Viktor Johannes; Berninger, Frank; Ilvesniemi, Hannu; Oinonen, Markku; Sonninen, Eloni; Kukumägi, Mai; Heinonsalo, Jussi (July 2017). "The effect of roots and easily available carbon on the decomposition of soil organic matter fractions in boreal forest soil". European Journal of Soil Science. 68 (4): 537–46. Bibcode:2017EuJSS..68..537P. doi:10.1111/ejss.12439 . Retrieved 27 October 2025.
  19. Mielke, Louiis A.; Klein, Julian; Ekblad, Alf; Finlay, Roger D.; Lindahl, Björn D.; Clemmensen, Karina E. (September 2025). "Fungal guild interactions slow decomposition of boreal forest pine litter and humus". New Phytologist . 247 (5): 2367–80. Bibcode:2025NewPh.247.2367M. doi: 10.1111/nph.70316 . PMC   12329171 . PMID   40552521.
  20. Andersson, Stefan; Nilsson, S. Ingvar; Saetre, Peter (January 2000). "Leaching of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in mor humus as affected by temperature and pH". Soil Biology and Biochemistry . 32 (1): 1–10. Bibcode:2000SBiBi..32....1A. doi:10.1016/S0038-0717(99)00103-0 . Retrieved 27 October 2025.
  21. Lundström, Ulla S.; Van Breemen, Nico; Bain, Derek (February 2000). "The podzolization process: a review". Geoderma. 94 (2–4): 91–107. Bibcode:2000Geode..94...91L. doi:10.1016/S0016-7061(99)00036-1 . Retrieved 27 October 2025.
  22. Ogner, Gunnar (September 1985). "A comparison of four different raw humus types in Norway using chemical degradations and CPMAS 13C NMR spectroscopy". Geoderma. 35 (4): 343–53. Bibcode:1985Geode..35..343O. doi:10.1016/0016-7061(85)90017-5 . Retrieved 28 October 2025.
  23. Takahashi, Masamichi (1997). "Comparison of nutrient concentrations in organic layers between broad-leaved and coniferous forests". Soil Science and Plant Nutrition. 43 (3): 541–50. Bibcode:1997SSPN...43..541T. doi: 10.1080/00380768.1997.10414781 .
  24. Šantrůčková, Hana; Cienciala, Emil; Kaňa, Jiří; Kopáček, Jiří (15 October 2019). "The chemical composition of forest soils and their degree of acidity in Central Europe". Science of the Total Environment . 687: 96–103. Bibcode:2019ScTEn.687...96S. doi:10.1016/j.scitotenv.2019.06.078. PMID   31203012 . Retrieved 28 October 2025.
  25. Sahin, Halil Turgut; Yalcin, Omer Umit (3 November 2017). "Chemical composition and utilization of conifer needles: a review". Journal of Applied Life Sciences International. 14 (3): 1–11. doi: 10.9734/JALSI/2017/37076 .
  26. Adu-Amankwaah, Francis; Mpundu, Hleziphi V.; Nyambo, Kudakwashe; Strauss, Paula; Tapfuma, Kudzanai Ian; Tshililo, Ndivhuwo; Badejo, Motunrayo Victoria; Mabasa, Lawrence; Mavumengwana, Vuyo; Baatjies, Lucinda (February 2025). "Phytochemical and pharmacological review of Erica genus (L.) Ericaceae plants". Phytomedicine Plus. 5 (1) 100697. doi: 10.1016/j.phyplu.2024.100697 .
  27. Barbehenn, Raymond V.; Constabel, C. Peter (September 2011). "Tannins in plant-herbivore interactions". Phytochemistry . 72 (13): 1551–65. Bibcode:2011PChem..72.1551B. doi:10.1016/j.phytochem.2011.01.040. PMID   21354580 . Retrieved 28 October 2025.
  28. Huang, Jianzi; Zaynab, Madiha; Sharif, Yasir; Khan, Jallat; Al-Yahyai, Rashid Abdullah; Sadder, Monther; Ali, Jean-Munawar; Alarab, Saber R.; Li, Shuangfei (28 August 2024). "Tannins as antimicrobial agents: understanding toxic effects on pathogens". Toxicon . 247 107812. doi:10.1016/j.toxicon.2024.107812. PMID   38908527 . Retrieved 21 October 2025.
  29. Costadinnova, Latinka; Hristova, Mira; Kolusheva, T.; Stoilova, Nadezhda (2012). "Conductometric study of the acidity properties of tannic acid (Chinese tannin)". Journal of the University of Chemical Technology and Metallurgy. 47 (3): 289–96. Retrieved 28 October 2025.
  30. Ehlers, Bodil K.; Berg, Matty P.; Staudt, Michael; Holmstrup, Martin; Glasius, Marianne; Ellers, Jacintha; Yomiolo, Sara; Madsen, René B.; Slotsbo, Stine; Penuelas, Josep (August 2020). "Plant secondary compounds in soil and their role in belowground species interactions". Trends in Ecology & Evolution . 35 (8): 716–30. Bibcode:2020TEcoE..35..716E. doi:10.1016/j.tree.2020.04.001 . Retrieved 28 October 2025.
  31. Lavelle, Patrick; Chauvel, Armand; Fragoso, Carlos (1995). "Faunal activity in acid soils". In Date, R.A.; Grundon, Noel J.; Rayment, George E.; Probert, Mervyn E. (eds.). Plant-soil interactions at low pH: principles and management. Developments in Soil Science. Vol. 64. Amsterdam, The Netherlands: Elsevier. pp. 201–11. doi:10.1007/978-94-011-0221-6_29. ISBN   978-94-011-0221-6. ISSN   0166-2481. S2CID   214319901 . Retrieved 28 October 2025.
  32. Schwarz, Julia; Schumacher, Kilian; Brameyer, Sophie; Jung, Kirsten (November 2022). "Bacterial battle against acidity". FEMS Microbiology Reviews . 46 (6) fuac037. doi:10.1093/femsre/fuac037 . Retrieved 28 October 2025.
  33. Prescott, Cindy E.; Maynard, Doug G.; Laiho, Raija (August 2000). "Humus in northern forests: friend or foe?". Forest Ecology and Management . 133 (1–2): 23–36. Bibcode:2000ForEM.133...23P. doi:10.1016/s0378-1127(99)00295-9. ISSN   0378-1127 . Retrieved 29 October 2025.
  34. Sjöberg, Gudrun; Bergkvist, Bo; Berggren, Dan; Nilsson, Sven Ingvar (October 2003). "Long-term N addition effects on the C mineralization and DOC production in mor humus under spruce". Soil Biology and Biochemistry . 35 (10): 1305–15. doi:10.1016/S0038-0717(03)00201-3 . Retrieved 28 October 2025.
  35. Meng, Deling; Liu, Jing; Yan, Lingyu; Cheng, Zhiping; Wei, Yawei; Qin, Shengjin (24 April 2025). "The humus layer promotes needle litter decomposition but not carbon release or phosphorus accumulation in a Pinus sylvestris var. mongolica plantation". Ecological Processes. 14 45. doi:10.1186/s13717-025-00615-y . Retrieved 29 October 2025.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  36. Shrivastav, Preksha; Prasad, Mrinalini; Singh, Teg Bahadur; Yadav, Arti; Goyal, Deepika; Ali, Akbar; Dantu, Prem Kumar (26 April 2020). "Role of nutrients in plant growth and development". In Naeem, Muhammad; Ansari, Abid Ali; Gill, Sarvajeet Singh (eds.). Contaminants in agriculture: sources, impacts and management. Cham, Switzerland: Springer Nature. pp. 43–59. doi:10.1007/978-3-030-41552-5_2. ISBN   978-3-030-41552-5 . Retrieved 29 October 2025.
  37. Xiaogai, Ge; Lixiong, Zeng; Wenfa, Xiao; Zhilin, Huang; Xiansheng, Geng; Benwang, Tan (April 2013). "Effect of litter substrate quality and soil nutrients on forest litter decomposition: a review". Acta Ecologica Sinica. 33 (2): 102–8. doi:10.1016/j.chnaes.2013.01.006 . Retrieved 29 October 2025.
  38. Ponge, Jean-François (February 2013). "Plant-soil feedbacks mediated by humus forms: a review". Soil Biology and Biochemistry . 57: 1048–60. Bibcode:2013SBiBi..57.1048P. doi:10.1016/j.soilbio.2012.07.019. S2CID   84606515 . Retrieved 29 October 2025.
  39. Zanella, Augusto; Ponge, Jean-François; Jabiol, Bernard; Sartori, Giacomo; Kolb, Eckart; Le Bayon, Renée-Claire; Gobat, Jean-Michel; Aubert, Michaël; De Waal, Rein; Van Delft, Bas; Vacca, Andrea; Serra, Gianluca; Chersich, Silvia; Andreetta, Anna; Kõlli, Raimo; Brun, Jean-Jacques; Cools, Nathalie; Englisch, Michael; Hager, Herbert; Katzensteiner, Klaus; Brêthes, Alain; De Nicola, Cristina; Testi, Anna; Bernier, Nicolas; Graefe, Ulfert; Wolf, Ugo; Juilleret, Jérôme; Garlato, Andrea; Obber, Silvia; Galvan, Paola; Zampedri, Roberto; Frizzera, Lorenzo; Tomasi, Mauro; Banas, Damien; Bureau, Fabrice; Tatti, Dylan; Salmon, Sandrine; Menardi, Roberto; Fontanella, Fausto; Carraro, Vinicio; Pizzeghello, Diego; Concheri, Giuseppe; Squartini, Andrea; Cattaneo, Dina; Scattolin, Linda; Nardi, Serenella; Nicolini, Gianni; Viola, Franco (January 2018). "Terrestrial humus systems and forms: keys of classification of humus systems and forms". Applied Soil Ecology. 122 (Part 1): 75–86. doi:10.1016/j.apsoil.2017.06.012 . Retrieved 10 October 2025.