Modular invariant theory

Last updated

In mathematics, a modular invariant of a group is an invariant of a finite group acting on a vector space of positive characteristic (usually dividing the order of the group). The study of modular invariants was originated in about 1914 by Dickson (2004).

Contents

Dickson invariant

When G is the finite general linear group GLn(Fq) over the finite field Fq of order a prime power q acting on the ring Fq[X1, ...,Xn] in the natural way, Dickson (1911) found a complete set of invariants as follows. Write [e1, ..., en] for the determinant of the matrix whose entries are Xqej
i
, where e1, ..., en are non-negative integers. For example, the Moore determinant [0,1,2] of order 3 is

Then under the action of an element g of GLn(Fq) these determinants are all multiplied by det(g), so they are all invariants of SLn(Fq) and the ratios [e1, ...,en]/[0, 1, ..., n 1] are invariants of GLn(Fq), called Dickson invariants. Dickson proved that the full ring of invariants Fq[X1, ...,Xn]GLn(Fq) is a polynomial algebra over the n Dickson invariants [0, 1, ..., i  1, i + 1, ..., n]/[0, 1, ..., n 1] for i = 0, 1, ..., n  1. Steinberg (1987) gave a shorter proof of Dickson's theorem.

The matrices [e1, ..., en] are divisible by all non-zero linear forms in the variables Xi with coefficients in the finite field Fq. In particular the Moore determinant [0, 1, ..., n 1] is a product of such linear forms, taken over 1 + q + q2 + ... + qn  1 representatives of (n 1)-dimensional projective space over the field. This factorization is similar to the factorization of the Vandermonde determinant into linear factors.

See also

Related Research Articles

In linear algebra, the determinant is a scalar value that can be computed from the elements of a square matrix and encodes certain properties of the linear transformation described by the matrix. The determinant of a matrix A is denoted det(A), det A, or |A|. Geometrically, it can be viewed as the volume scaling factor of the linear transformation described by the matrix. This is also the signed volume of the n-dimensional parallelepiped spanned by the column or row vectors of the matrix. The determinant is positive or negative according to whether the linear transformation preserves or reverses the orientation of a real vector space.

Elliptic curve Algebraic curve

In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point O. Every elliptic curve over a field of characteristic different from 2 and 3 can be described as a plane algebraic curve given by an equation of the form

In mathematics, a finite field or Galois field is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod p when p is a prime number.

In mathematics, a unique factorization domain (UFD) is a ring in which a statement analogous to the fundamental theorem of arithmetic holds. Specifically, a UFD is an integral domain in which every non-zero non-unit element can be written as a product of prime elements, uniquely up to order and units.

Orthogonal group Group of isometries of a Euclidean vector space or, more generally, of a vector space equipped with a quadratic form

In mathematics, the orthogonal group in dimension n, denoted O(n), is the group of distance-preserving transformations of a Euclidean space of dimension n that preserve a fixed point, where the group operation is given by composing transformations. The orthogonal group is sometimes called the general orthogonal group, by analogy with the general linear group. Equivalently, it is the group of n×n orthogonal matrices, where the group operation is given by matrix multiplication; an orthogonal matrix is a real matrix whose inverse equals its transpose. The orthogonal group is an algebraic group and a Lie group. It is compact.

In linear algebra, the characteristic polynomial of a square matrix is a polynomial which is invariant under matrix similarity and has the eigenvalues as roots. It has the determinant and the trace of the matrix among its coefficients. The characteristic polynomial of an endomorphism of vector spaces of finite dimension is the characteristic polynomial of the matrix of the endomorphism over any base; it does not depend on the choice of a basis. The characteristic equation, also known as the determinantal equation, is the equation obtained by equating to zero the characteristic polynomial.

In mathematics, the Wronskian is a determinant introduced by Józef Hoene-Wroński (1812) and named by Thomas Muir. It is used in the study of differential equations, where it can sometimes show linear independence in a set of solutions.

Finite group

In abstract algebra, a finite group is a group whose underlying set is finite. Finite groups often arise when considering symmetry of mathematical or physical objects, when those objects admit just a finite number of structure-preserving transformations. Important examples of finite groups include cyclic groups and permutation groups.

Invariant theory is a branch of abstract algebra dealing with actions of groups on algebraic varieties, such as vector spaces, from the point of view of their effect on functions. Classically, the theory dealt with the question of explicit description of polynomial functions that do not change, or are invariant, under the transformations from a given linear group. For example, if we consider the action of the special linear group SLn on the space of n by n matrices by left multiplication, then the determinant is an invariant of this action because the determinant of A X equals the determinant of X, when A is in SLn.

In mathematics Haboush's theorem, often still referred to as the Mumford conjecture, states that for any semisimple algebraic group G over a field K, and for any linear representation ρ of G on a K-vector space V, given v ≠ 0 in V that is fixed by the action of G, there is a G-invariant polynomial F on V, without constant term, such that

Group of Lie type

In mathematics, specifically in group theory, the phrase group of Lie type usually refers to finite groups that are closely related to the group of rational points of a reductive linear algebraic group with values in a finite field. The phrase group of Lie type does not have a widely accepted precise definition, but the important collection of finite simple groups of Lie type does have a precise definition, and they make up most of the groups in the classification of finite simple groups.

Leonard Eugene Dickson was an American mathematician. He was one of the first American researchers in abstract algebra, in particular the theory of finite fields and classical groups, and is also remembered for a three-volume history of number theory, History of the Theory of Numbers.

Robert Steinberg was a mathematician at the University of California, Los Angeles.

In mathematics, the Dickson polynomials, denoted Dn(x,α), form a polynomial sequence introduced by L. E. Dickson (1897). They were rediscovered by Brewer (1961) in his study of Brewer sums and have at times, although rarely, been referred to as Brewer polynomials.

In mathematics, the Chevalley–Shephard–Todd theorem in invariant theory of finite groups states that the ring of invariants of a finite group acting on a complex vector space is a polynomial ring if and only if the group is generated by pseudoreflections. In the case of subgroups of the complex general linear group the theorem was first proved by G. C. Shephard and J. A. Todd (1954) who gave a case-by-case proof. Claude Chevalley (1955) soon afterwards gave a uniform proof. It has been extended to finite linear groups over an arbitrary field in the non-modular case by Jean-Pierre Serre.

In linear algebra, a Moore matrix, introduced by E. H. Moore (1896), is a matrix defined over a finite field. When it is a square matrix its determinant is called a Moore determinant. The Moore matrix has successive powers of the Frobenius automorphism applied to its columns, so it is an m × n matrix

In mathematics, Cayley's Ω process, introduced by Arthur Cayley (1846), is a relatively invariant differential operator on the general linear group, that is used to construct invariants of a group action.

In mathematics, an algebraic number fieldF is a finite degree field extension of the field of rational numbers Q. Thus F is a field that contains Q and has finite dimension when considered as a vector space over Q.

Mildred Sanderson American mathematician

Mildred Sanderson was an American mathematician, best known for her mathematical theorem concerning modular invariants.

In mathematics, a linearised polynomial is a polynomial for which the exponents of all the constituent monomials are powers of q and the coefficients come from some extension field of the finite field of order q.

References