Montel's theorem

Last updated

In complex analysis, an area of mathematics, Montel's theorem refers to one of two theorems about families of holomorphic functions. These are named after French mathematician Paul Montel, and give conditions under which a family of holomorphic functions is normal.

Contents

Locally uniformly bounded families are normal

The first, and simpler, version of the theorem states that a family of holomorphic functions defined on an open subset of the complex numbers is normal if and only if it is locally uniformly bounded.

This theorem has the following formally stronger corollary. Suppose that is a family of meromorphic functions on an open set . If is such that is not normal at , and is a neighborhood of , then is dense in the complex plane.

Functions omitting two values

The stronger version of Montel's Theorem (occasionally referred to as the Fundamental Normality Test) states that a family of holomorphic functions, all of which omit the same two values is normal.

Necessity

The conditions in the above theorems are sufficient, but not necessary for normality. Indeed, the family is normal, but does not omit any complex value.

Proofs

The first version of Montel's theorem is a direct consequence of Marty's Theorem (which states that a family is normal if and only if the spherical derivatives are locally bounded) and Cauchy's integral formula. [1]

This theorem has also been called the Stieltjes–Osgood theorem, after Thomas Joannes Stieltjes and William Fogg Osgood. [2]

The Corollary stated above is deduced as follows. Suppose that all the functions in omit the same neighborhood of the point . By postcomposing with the map we obtain a uniformly bounded family, which is normal by the first version of the theorem.

The second version of Montel's theorem can be deduced from the first by using the fact that there exists a holomorphic universal covering from the unit disk to the twice punctured plane . (Such a covering is given by the elliptic modular function).

This version of Montel's theorem can be also derived from Picard's theorem, by using Zalcman's lemma.

Relationship to theorems for entire functions

A heuristic principle known as Bloch's Principle (made precise by Zalcman's lemma) states that properties that imply that an entire function is constant correspond to properties that ensure that a family of holomorphic functions is normal.

For example, the first version of Montel's theorem stated above is the analog of Liouville's theorem, while the second version corresponds to Picard's theorem.

See also

Notes

  1. Hartje Kriete (1998). Progress in Holomorphic Dynamics. CRC Press. p. 164. Retrieved 2009-03-01.
  2. Reinhold Remmert, Leslie M. Kay (1998). Classical Topics in Complex Function Theory. Springer. p. 154. Retrieved 2009-03-01.

Related Research Articles

<span class="mw-page-title-main">Complex analysis</span> Branch of mathematics studying functions of a complex variable

Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, applied mathematics; as well as in physics, including the branches of hydrodynamics, thermodynamics, and particularly quantum mechanics. By extension, use of complex analysis also has applications in engineering fields such as nuclear, aerospace, mechanical and electrical engineering.

<span class="mw-page-title-main">Riemann mapping theorem</span>

In complex analysis, the Riemann mapping theorem states that if is a non-empty simply connected open subset of the complex number plane which is not all of , then there exists a biholomorphic mapping from onto the open unit disk

<span class="mw-page-title-main">Complex geometry</span> Study of complex manifolds and several complex variables

In mathematics, complex geometry is the study of geometric structures and constructions arising out of, or described by, the complex numbers. In particular, complex geometry is concerned with the study of spaces such as complex manifolds and complex algebraic varieties, functions of several complex variables, and holomorphic constructions such as holomorphic vector bundles and coherent sheaves. Application of transcendental methods to algebraic geometry falls in this category, together with more geometric aspects of complex analysis.

The Riemann–Roch theorem is an important theorem in mathematics, specifically in complex analysis and algebraic geometry, for the computation of the dimension of the space of meromorphic functions with prescribed zeros and allowed poles. It relates the complex analysis of a connected compact Riemann surface with the surface's purely topological genus g, in a way that can be carried over into purely algebraic settings.

<span class="mw-page-title-main">Inverse function theorem</span> Theorem in mathematics

In mathematics, specifically differential calculus, the inverse function theorem gives a sufficient condition for a function to be invertible in a neighborhood of a point in its domain: namely, that its derivative is continuous and non-zero at the point. The theorem also gives a formula for the derivative of the inverse function. In multivariable calculus, this theorem can be generalized to any continuously differentiable, vector-valued function whose Jacobian determinant is nonzero at a point in its domain, giving a formula for the Jacobian matrix of the inverse. There are also versions of the inverse function theorem for complex holomorphic functions, for differentiable maps between manifolds, for differentiable functions between Banach spaces, and so forth.

In complex analysis, Liouville's theorem, named after Joseph Liouville, states that every bounded entire function must be constant. That is, every holomorphic function for which there exists a positive number such that for all is constant. Equivalently, non-constant holomorphic functions on have unbounded images.

<span class="mw-page-title-main">Projective variety</span>

In algebraic geometry, a projective variety over an algebraically closed field k is a subset of some projective n-space over k that is the zero-locus of some finite family of homogeneous polynomials of n + 1 variables with coefficients in k, that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of .

The theory of functions of several complex variables is the branch of mathematics dealing with functions defined on the complex coordinate space , that is, n-tuples of complex numbers. The name of the field dealing with the properties of these functions is called several complex variables, which the Mathematics Subject Classification has as a top-level heading.

In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold M using partial differential equations. The key observation is that, given a Riemannian metric on M, every cohomology class has a canonical representative, a differential form that vanishes under the Laplacian operator of the metric. Such forms are called harmonic.

In mathematics, a Paley–Wiener theorem is any theorem that relates decay properties of a function or distribution at infinity with analyticity of its Fourier transform. The theorem is named for Raymond Paley (1907–1933) and Norbert Wiener (1894–1964). The original theorems did not use the language of distributions, and instead applied to square-integrable functions. The first such theorem using distributions was due to Laurent Schwartz. These theorems heavily rely on the triangle inequality.

<span class="mw-page-title-main">K3 surface</span> Type of smooth complex surface of kodaira dimension 0

In mathematics, a complex analytic K3 surface is a compact connected complex manifold of dimension 2 with а trivial canonical bundle and irregularity zero. An (algebraic) K3 surface over any field means a smooth proper geometrically connected algebraic surface that satisfies the same conditions. In the Enriques–Kodaira classification of surfaces, K3 surfaces form one of the four classes of minimal surfaces of Kodaira dimension zero. A simple example is the Fermat quartic surface

In complex analysis, Picard's great theorem and Picard's little theorem are related theorems about the range of an analytic function. They are named after Émile Picard.

In mathematics, with special application to complex analysis, a normal family is a pre-compact subset of the space of continuous functions. Informally, this means that the functions in the family are not widely spread out, but rather stick together in a somewhat "clustered" manner. Note that a compact family of continuous functions is automatically a normal family. Sometimes, if each function in a normal family F satisfies a particular property , then the property also holds for each limit point of the set F.

In mathematics, the Picard group of a ringed space X, denoted by Pic(X), is the group of isomorphism classes of invertible sheaves (or line bundles) on X, with the group operation being tensor product. This construction is a global version of the construction of the divisor class group, or ideal class group, and is much used in algebraic geometry and the theory of complex manifolds.

In mathematics, especially in algebraic geometry and the theory of complex manifolds, the adjunction formula relates the canonical bundle of a variety and a hypersurface inside that variety. It is often used to deduce facts about varieties embedded in well-behaved spaces such as projective space or to prove theorems by induction.

In mathematics, in particular in algebraic geometry and differential geometry, Dolbeault cohomology (named after Pierre Dolbeault) is an analog of de Rham cohomology for complex manifolds. Let M be a complex manifold. Then the Dolbeault cohomology groups depend on a pair of integers p and q and are realized as a subquotient of the space of complex differential forms of degree (p,q).

In mathematics, a holomorphic vector bundle is a complex vector bundle over a complex manifold X such that the total space E is a complex manifold and the projection map π : EX is holomorphic. Fundamental examples are the holomorphic tangent bundle of a complex manifold, and its dual, the holomorphic cotangent bundle. A holomorphic line bundle is a rank one holomorphic vector bundle.

In mathematics, superfunction is a nonstandard name for an iterated function for complexified continuous iteration index. Roughly, for some function f and for some variable x, the superfunction could be defined by the expression

In complex analysis, a mathematical discipline, the fundamental normality test gives sufficient conditions to test the normality of a family of analytic functions. It is another name for the stronger version of Montel's theorem.

Bloch's Principle is a philosophical principle in mathematics stated by André Bloch.

References

This article incorporates material from Montel's theorem on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.