Morphological skeleton

Last updated

In digital image processing, morphological skeleton is a skeleton (or medial axis) representation of a shape or binary image, computed by means of morphological operators.

Contents

Examples of skeleton extraction of figures in the binary image Szkielet przyklady.png
Examples of skeleton extraction of figures in the binary image

Morphological skeletons are of two kinds:

Skeleton by openings

Lantuéjoul's formula

Continuous images

In (Lantuéjoul 1977), [1] Lantuéjoul derived the following morphological formula for the skeleton of a continuous binary image :

,

where and are the morphological erosion and opening, respectively, is an open ball of radius , and is the closure of .

Discrete images

Let , , be a family of shapes, where B is a structuring element,

, and
, where o denotes the origin.

The variable n is called the size of the structuring element.

Lantuéjoul's formula has been discretized as follows. For a discrete binary image , the skeleton S(X) is the union of the skeleton subsets, , where:

.

Reconstruction from the skeleton

The original shape X can be reconstructed from the set of skeleton subsets as follows:

.

Partial reconstructions can also be performed, leading to opened versions of the original shape:

.

The skeleton as the centers of the maximal disks

Let be the translated version of to the point z, that is, .

A shape centered at z is called a maximal disk in a set A when:

  • , and
  • if, for some integer m and some point y, , then .

Each skeleton subset consists of the centers of all maximal disks of size n.

Performing Morphological Skeletonization on Images

Skeleton image of fingerprint operated on by Matlab. Original, unaltered image is on the left. The middle image has generated using bwmorph(Matlab) without preprocessing. The rightmost image, was preprocessed using Automatic Thresholding to increase contrast and skeleton was generated using bwmorph FingerPrintCompare.jpg
Skeleton image of fingerprint operated on by Matlab. Original, unaltered image is on the left. The middle image has generated using bwmorph(Matlab) without preprocessing. The rightmost image, was preprocessed using Automatic Thresholding to increase contrast and skeleton was generated using bwmorph

Morphological Skeletonization can be considered as a controlled erosion process. This involves shrinking the image until the area of interest is 1 pixel wide. This can allow quick and accurate image processing on an otherwise large and memory intensive operation. A great example of using skeletonization on an image is processing fingerprints. This can be quickly accomplished using bwmorph; a built-in Matlab function which will implement the Skeletonization Morphology technique to the image.

The image to the right shows the extent of what skeleton morphology can accomplish. Given a partial image, it is possible to extract a much fuller picture. Properly pre-processing the image with a simple Auto Threshold grayscale to binary converter will give the skeletonization function an easier time thinning. The higher contrast ratio will allow the lines to joined in a more accurate manner. Allowing to properly reconstruct the fingerprint.

skelIm = bwmorph(orIm,'skel',Inf); %Function used to generate Skeletonization Images 

Notes

Related Research Articles

In computability theory, a primitive recursive function is, roughly speaking, a function that can be computed by a computer program whose loops are all "for" loops. Primitive recursive functions form a strict subset of those general recursive functions that are also total functions.

<span class="mw-page-title-main">Quaternion group</span>

In group theory, the quaternion group Q8 (sometimes just denoted by Q) is a non-abelian group of order eight, isomorphic to the eight-element subset of the quaternions under multiplication. It is given by the group presentation

<span class="mw-page-title-main">Mathematical morphology</span>

Mathematical morphology (MM) is a theory and technique for the analysis and processing of geometrical structures, based on set theory, lattice theory, topology, and random functions. MM is most commonly applied to digital images, but it can be employed as well on graphs, surface meshes, solids, and many other spatial structures.

<span class="mw-page-title-main">Erosion (morphology)</span>

Erosion is one of two fundamental operations in morphological image processing from which all other morphological operations are based. It was originally defined for binary images, later being extended to grayscale images, and subsequently to complete lattices. The erosion operation usually uses a structuring element for probing and reducing the shapes contained in the input image.

Dilation is one of the basic operations in mathematical morphology. Originally developed for binary images, it has been expanded first to grayscale images, and then to complete lattices. The dilation operation usually uses a structuring element for probing and expanding the shapes contained in the input image.

<span class="mw-page-title-main">Opening (morphology)</span>

In mathematical morphology, opening is the dilation of the erosion of a set A by a structuring element B:

<span class="mw-page-title-main">Closing (morphology)</span>

In mathematical morphology, the closing of a set A by a structuring element B is the erosion of the dilation of that set,

The representation theory of groups is a part of mathematics which examines how groups act on given structures.

<span class="mw-page-title-main">Dyadic transformation</span> Doubling map on the unit interval

The dyadic transformation is the mapping

The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently, but analogously, for different kinds of structures. To see how the direct sum is used in abstract algebra, consider a more elementary kind of structure, the abelian group. The direct sum of two abelian groups and is another abelian group consisting of the ordered pairs where and . To add ordered pairs, we define the sum to be ; in other words addition is defined coordinate-wise. For example, the direct sum , where is real coordinate space, is the Cartesian plane, . A similar process can be used to form the direct sum of two vector spaces or two modules.

The pruning algorithm is a technique used in digital image processing based on mathematical morphology. It is used as a complement to the skeleton and thinning algorithms to remove unwanted parasitic components (spurs). In this case 'parasitic' components refer to branches of a line which are not key to the overall shape of the line and should be removed. These components can often be created by edge detection algorithms or digitization. Common uses for pruning include automatic recognition of hand-printed characters. Often inconsistency in letter writing creates unwanted spurs that need to be eliminated for better characterization.

In logic, a modal companion of a superintuitionistic (intermediate) logic L is a normal modal logic that interprets L by a certain canonical translation, described below. Modal companions share various properties of the original intermediate logic, which enables to study intermediate logics using tools developed for modal logic.

In topology, a branch of mathematics, an abstract stratified space, or a Thom–Mather stratified space is a topological space X that has been decomposed into pieces called strata; these strata are manifolds and are required to fit together in a certain way. Thom–Mather stratified spaces provide a purely topological setting for the study of singularities analogous to the more differential-geometric theory of Whitney. They were introduced by René Thom, who showed that every Whitney stratified space was also a topologically stratified space, with the same strata. Another proof was given by John Mather in 1970, inspired by Thom's proof.

The Schröder–Bernstein theorem from set theory has analogs in the context operator algebras. This article discusses such operator-algebraic results.

Algebraic signal processing (ASP) is an emerging area of theoretical signal processing (SP). In the algebraic theory of signal processing, a set of filters is treated as an (abstract) algebra, a set of signals is treated as a module or vector space, and convolution is treated as an algebra representation. The advantage of algebraic signal processing is its generality and portability.

In mathematical morphology, hit-or-miss transform is an operation that detects a given configuration in a binary image, using the morphological erosion operator and a pair of disjoint structuring elements. The result of the hit-or-miss transform is the set of positions where the first structuring element fits in the foreground of the input image, and the second structuring element misses it completely.

In mathematical morphology and digital image processing, a morphological gradient is the difference between the dilation and the erosion of a given image. It is an image where each pixel value indicates the contrast intensity in the close neighborhood of that pixel. It is useful for edge detection and segmentation applications.

<span class="mw-page-title-main">Granulometry (morphology)</span>

In mathematical morphology, granulometry is an approach to compute a size distribution of grains in binary images, using a series of morphological opening operations. It was introduced by Georges Matheron in the 1960s, and is the basis for the characterization of the concept of size in mathematical morphology.

<span class="mw-page-title-main">Radiation stress</span> Term in physical oceanography

In fluid dynamics, the radiation stress is the depth-integrated – and thereafter phase-averaged – excess momentum flux caused by the presence of the surface gravity waves, which is exerted on the mean flow. The radiation stresses behave as a second-order tensor.

In functional analysis and related areas of mathematics, a complete topological vector space is a topological vector space (TVS) with the property that whenever points get progressively closer to each other, then there exists some point towards which they all get closer. The notion of "points that get progressively closer" is made rigorous by Cauchy nets or Cauchy filters, which are generalizations of Cauchy sequences, while "point towards which they all get closer" means that this Cauchy net or filter converges to The notion of completeness for TVSs uses the theory of uniform spaces as a framework to generalize the notion of completeness for metric spaces. But unlike metric-completeness, TVS-completeness does not depend on any metric and is defined for all TVSs, including those that are not metrizable or Hausdorff.

References