Morris Operation

Last updated

The Morris Operation in Grundy County, Illinois, United States, is the location of the only permanent (the rest are temporary) de facto high-level radioactive waste storage site in the United States and holds 772 tons of spent nuclear fuel. [1] It is owned by GE Hitachi Nuclear Energy and located near the city of Morris. [2] The site is located immediately southwest of Dresden Generating Station. Spent nuclear fuel assemblies are stored at this away-from-reactor, Independent Spent Fuel Storage Installation (ISFSI) in a spent fuel storage pool. [3] [4] [5] The storage basins at the Morris Operation store spent high-level radioactive waste from Connecticut Yankee Nuclear Power Plant, Cooper Nuclear Station, Dresden Generating Station, Monticello Nuclear Generating Plant, and San Onofre Nuclear Generating Station. [6] The newest fuel currently in storage has been at the site since 1989, and the basins are essentially full. No new fuel will be received and storage is limited to the current inventory. [6]

Nuclear fuel reprocessing

The facility was originally constructed by General Electric to reprocess spent nuclear fuel, but was never operational in that use. Testing in 1975 revealed that the facility would not operate properly without extensive modifications, and the facility's application for a license to reprocess was withdrawn. [7] In 2007 and 2013 proposals were advanced for the completion of the reprocessing facility. [8]

Related Research Articles

<span class="mw-page-title-main">Nuclear power</span> Power generated from nuclear reactions

Nuclear power is the use of nuclear reactions to produce electricity. Nuclear power can be obtained from nuclear fission, nuclear decay and nuclear fusion reactions. Presently, the vast majority of electricity from nuclear power is produced by nuclear fission of uranium and plutonium in nuclear power plants. Nuclear decay processes are used in niche applications such as radioisotope thermoelectric generators in some space probes such as Voyager 2. Generating electricity from fusion power remains the focus of international research.

<span class="mw-page-title-main">Radioactive waste</span> Unusable radioactive materials

Radioactive waste is a type of hazardous waste that contains radioactive material. Radioactive waste is a result of many activities, including nuclear medicine, nuclear research, nuclear power generation, nuclear decommissioning, rare-earth mining, and nuclear weapons reprocessing. The storage and disposal of radioactive waste is regulated by government agencies in order to protect human health and the environment.

<span class="mw-page-title-main">Nuclear power plant</span> Thermal power station where the heat source is a nuclear reactor

A nuclear power plant (NPP) is a thermal power station in which the heat source is a nuclear reactor. As is typical of thermal power stations, heat is used to generate steam that drives a steam turbine connected to a generator that produces electricity. As of September 2023, the International Atomic Energy Agency reported there were 410 nuclear power reactors in operation in 31 countries around the world, and 57 nuclear power reactors under construction.

<span class="mw-page-title-main">Dry cask storage</span> Radioactive waste storage method

Dry cask storage is a method of storing high-level radioactive waste, such as spent nuclear fuel that has already been cooled in the spent fuel pool for at least one year and often as much as ten years. Casks are typically steel cylinders that are either welded or bolted closed. The fuel rods inside are surrounded by inert gas. Ideally, the steel cylinder provides leak-tight containment of the spent fuel. Each cylinder is surrounded by additional steel, concrete, or other material to provide radiation shielding to workers and members of the public.

<span class="mw-page-title-main">Columbia Generating Station</span> Nuclear energy facility in Washington, US

Columbia Generating Station is a nuclear commercial energy facility located on the Hanford Site, 10 miles (16 km) north of Richland, Washington. It is owned and operated by Energy Northwest, a Washington state, not-for-profit joint operating agency. Licensed by the Nuclear Regulatory Commission in 1983, Columbia first produced electricity in May 1984, and entered commercial operation in December 1984.

<span class="mw-page-title-main">Vallecitos Nuclear Center</span>

The Vallecitos Nuclear Center is a nuclear research facility, and the site of a former GE Hitachi Nuclear Energy electricity-generating nuclear power plant in unincorporated Alameda County, California, United States. The facility is approximately 30 miles (48 km) east of San Francisco, under jurisdiction of the US Nuclear Regulatory Commission's Region IV.

<span class="mw-page-title-main">Clinton Power Station</span> Nuclear power plant in DeWitt County, Illinois

The Clinton Power Station is a nuclear power plant located near Clinton, Illinois, USA. The power station began commercial operation on November 24, 1987 and has a nominal net electric output of 1062 MWe. Due to inflation and cost overruns, Clinton's final construction cost was $4.25 billion, nearly 1,000% over the original budget of $430 million and seven years behind schedule.

<span class="mw-page-title-main">West Valley Demonstration Project</span> Nuclear waste remediation site outside Buffalo, NY

The West Valley Demonstration Project is a nuclear waste remediation site in West Valley, New York in the U.S. state of New York. The project focuses on the cleanup and containment of radioactive waste left behind after the abandonment of a commercial nuclear fuel reprocessing plant in 1980. The project was created by an Act of Congress in 1980 and is directed to be a cooperative effort between the United States Department of Energy and the New York State Energy Research and Development Authority.

<span class="mw-page-title-main">Spent fuel pool</span> Storage pools for spent nuclear fuel

Spent fuel pools (SFP) are storage pools for spent fuel from nuclear reactors. They are typically 40 or more feet (12 m) deep, with the bottom 14 feet equipped with storage racks designed to hold fuel assemblies removed from reactors. A reactor's local pool is specially designed for the reactor in which the fuel was used and is situated at the reactor site. Such pools are used for short-term cooling of the fuel rods. This allows short-lived isotopes to decay and thus reduces the ionizing radiation and decay heat emanating from the rods. The water cools the fuel and provides radiological protection from its radiation.

<span class="mw-page-title-main">High-level waste</span> Highly radioactive waste material

High-level waste (HLW) is a type of nuclear waste created by the reprocessing of spent nuclear fuel. It exists in two main forms:

<span class="mw-page-title-main">Nuclear Waste Policy Act</span> 1982 United States federal law

The Nuclear Waste Policy Act of 1982 is a United States federal law which established a comprehensive national program for the safe, permanent disposal of highly radioactive wastes.

<span class="mw-page-title-main">Spent nuclear fuel</span> Nuclear fuel thats been irradiated in a nuclear reactor

Spent nuclear fuel, occasionally called used nuclear fuel, is nuclear fuel that has been irradiated in a nuclear reactor. It is no longer useful in sustaining a nuclear reaction in an ordinary thermal reactor and, depending on its point along the nuclear fuel cycle, it will have different isotopic constituents than when it started.

<span class="mw-page-title-main">Nuclear power in the United States</span> Power source providing US electricity

In the United States, nuclear power is provided by 92 commercial reactors with a net capacity of 94.7 gigawatts (GW), with 61 pressurized water reactors and 31 boiling water reactors. In 2019, they produced a total of 809.41 terawatt-hours of electricity, which accounted for 20% of the nation's total electric energy generation. In 2018, nuclear comprised nearly 50 percent of US emission-free energy generation.

<span class="mw-page-title-main">Yankee Rowe Nuclear Power Station</span> Decommissioned nuclear power plant in Massachusetts

Yankee Rowe Nuclear Power Station was a nuclear power plant in Rowe, Massachusetts, located on the Deerfield River in the town of Rowe in western Massachusetts. Its 180 MWe pressurized water reactor operated from 1961 to 1991. It produced electricity for New England consumers. The site is referred to as "Yankee-Rowe" or simply "Rowe", to avoid confusion with Vermont Yankee, another nuclear power station located in nearby Vernon, Vermont. The decommissioning of the site was completed in 2007.

Nuclear decommissioning is the process leading to the irreversible complete or partial closure of a nuclear facility, usually a nuclear reactor, with the ultimate aim at termination of the operating licence. The process usually runs according to a decommissioning plan, including the whole or partial dismantling and decontamination of the facility, ideally resulting in restoration of the environment up to greenfield status. The decommissioning plan is fulfilled when the approved end state of the facility has been reached.

<span class="mw-page-title-main">La Crosse Boiling Water Reactor</span> Decommissioned nuclear power plant near La Crosse, Wisconsin, USA

La Crosse Boiling Water Reactor (LACBWR) was a boiling water reactor (BWR) nuclear power plant located near La Crosse, Wisconsin in the small village of Genoa, in Vernon County, Wisconsin, approximately 17 miles south of La Crosse along the Mississippi River. It was located directly adjacent to the coal-fired Genoa Station #3. The site is owned and was operated by Dairyland Power Cooperative (Dairyland). Although the reactor has been demolished and decommissioned, spent nuclear fuel is still stored at the location.

<span class="mw-page-title-main">Gundremmingen Nuclear Power Plant</span> Nuclear power plant in Germany

The Gundremmingen Nuclear Power Plant was a nuclear power station in Germany. It was located in Gundremmingen, district of Günzburg, Bavaria. It was operated by Kernkraftwerk Gundremmingen GmbH, a joint operation of RWE Power AG (75%) and PreussenElektra (25%). Unit B was shut down at the end of 2017. Unit C, the last boiling water reactor in Germany, was shut down on New Year's Eve 2021, as part of the German nuclear phase out. However, Gundremmingen unit C as well as the other two German nuclear reactors shut down that day remain capable of restarting operations as of March 2022. In November 1975, Unit A was the site of the first fatal accident in a nuclear power plant and subsequently of a major incident resulting in a total loss in 1977.

<span class="mw-page-title-main">High-level radioactive waste management</span> Management and disposal of highly radioactive materials

High-level radioactive waste management concerns how radioactive materials created during production of nuclear power and nuclear weapons are dealt with. Radioactive waste contains a mixture of short-lived and long-lived nuclides, as well as non-radioactive nuclides. There was reportedly some 47,000 tonnes of high-level nuclear waste stored in the United States in 2002.

<i>Nuclear Power and the Environment</i>

Nuclear Power and the Environment, sometimes simply called the Flowers Report, was released in September 1976 and is the sixth report of the UK Royal Commission on Environmental Pollution, chaired by Sir Brian Flowers. The report was dedicated to "the Queen's most excellent Majesty." "He was appointed "to advise on matters, both national and international, concerning the pollution of the environment; on the adequacy of research in this field; and the future possibilities of danger to the environment." One of the recommendations of the report was that:

"There should be no commitment to a large programme of nuclear fission power until it has been demonstrated beyond reasonable doubt that a method exists to ensure the safe containment of longlived, highly radioactive waste for the indefinite future."

GE Hitachi Nuclear Energy (GEH) is a provider of advanced reactors and nuclear services. It is headquartered in Wilmington, North Carolina, United States. Established in June 2007, GEH is a nuclear alliance created by General Electric and Hitachi. In Japan, the alliance is Hitachi-GE Nuclear Energy. In November 2015, Jay Wileman was appointed CEO.

References

  1. Nuclear Energy Information Service. "'NUCLEAR ILLINOIS' FACTS", Nuclear Energy Information Service, 04/09
  2. GE Hitachi Nuclear Energy. "Application for Importation of LLRW into the Texas Waste Disposal Compact", Anthony E. McFadden, May 29, 2014
  3. Energy Information Administration. "Spent Nuclear Fuel Discharges from U. S. Reactors 1993", Energy Information Administration, February 1995
  4. Nuclear Regulatory Commission. "General Electric Company; Morris Operation Independent Spent Fuel Storage Installation; Notice of Consideration of Approval of Transfer of Special Nuclear Material License and Conforming Amendment and Opportunity for a Hearing", Nuclear Regulatory Commission, 04/10/2007
  5. Congressional Research Service. "Spent Nuclear Fuel Storage Locations and Inventory", Anthony Andrews, December 21, 2004
  6. 1 2 "GE Nuclear Energy, Morris Operation - Technical Specifications for Safety Amendment 12" (PDF). United States Nuclear Regulatory Commission. Retrieved 21 May 2020.
  7. Safety and Security of Commercial Spent Nuclear Fuel Storage. National Academies Press. 2006. p. 102. ISBN   0-309-09647-2.
  8. Themer, Robert. "GE wants fuel reprocessing facility near Morris". Daily Journal. Retrieved 16 July 2023.

41°22′51.9″N88°16′37.1″W / 41.381083°N 88.276972°W / 41.381083; -88.276972