Mosquito coil

Last updated
Mosquito coil Mosquito coil.JPG
Mosquito coil
Mosquito coil Mosquito repellent spiral.jpg
Mosquito coil

A mosquito coil is a mosquito-repelling incense, usually made into a spiral, and typically made using dried paste of pyrethrum powder. The coil is usually held at the center of the spiral, suspending it in the air, or wedged by two pieces of fireproof netting to allow continuous smoldering. Burning usually begins at the outer end of the spiral and progresses slowly toward the center of the spiral, producing a mosquito-repellent smoke. [1] A typical mosquito coil measures around 15 centimetres (6 in) in diameter and lasts around seven to twelve hours. Mosquito coils are widely used in Asia, Africa, South America, Canada, Mexico and Australia. [2]

Contents

Invention

Pyrethrum was used for centuries as an insecticide in Persia and Europe, [3] being developed into a mosquito coil in the late 1800s by a Japanese couple: Yuki and Eiichiro Ueyama  [ ja ]. At that time in Japan, pyrethrum powder was mixed with sawdust and burned to repel mosquitoes. Ueyama initially created incense sticks mixed from starch powder, dried mandarin orange skin powder, and pyrethrum powder, burning in around 40 minutes. In 1895, Yuki proposed making the sticks thicker and longer, and curling them in spirals, in order to make them last longer. In 1902, after a series of trials and errors, Eiichiro achieved an incense burning effect with a spiral shape. The method included cutting thick incense bars to a set length and manually winding them into a spiral. This method was used until 1957, when mass production was made possible through machine punching. [4] [5] After the Second World War, his company, Dainihon Jochugiku Co. Ltd, established joint-venture firms in various countries, including China and Thailand, to produce mosquito-repelling products based on local conditions. [5]

Ingredients

Active ingredients found in mosquito coils may include: [6]

Disadvantages

Mosquito coils can be fire hazards. Their use has resulted in numerous accidental fires. In 1999, a fire in a South Korean three-story dormitory caused the death of 23 people when a mosquito coil was left unattended. [8]

The strong smell from the smoke may also linger; permeating fabric and furniture.

The health risks of mosquito coils are still being researched with some studies highlighting connections with lung cancer and exposure to mosquito coil smoke. [9] [10] [11] Coils sold in China and Malaysia were found to produce as much smoke PM2.5 as 75–137 burning cigarettes and formaldehyde emission levels in line with 51 burning cigarettes. [2] Other studies in rats conclude that mosquito coils are not a significant health risk, although some organisms may experience temporary sensory irritation like that caused by smoke from the combustion of organic materials such as logs. In one study, rats were directly exposed to a coil's smoke for six hours a day, five days a week for thirteen weeks. They showed signs of sensory irritation from the high smoke concentration, but there were no adverse effects on other parts of the body. The study concluded that, with normal use, mosquito coils are unlikely to be a health risk. [12]

See also

Related Research Articles

<span class="mw-page-title-main">DDT</span> Organochloride known for its insecticidal properties

Dichlorodiphenyltrichloroethane, commonly known as DDT, is a colorless, tasteless, and almost odorless crystalline chemical compound, an organochloride. Originally developed as an insecticide, it became infamous for its environmental impacts. DDT was first synthesized in 1874 by the Austrian chemist Othmar Zeidler. DDT's insecticidal action was discovered by the Swiss chemist Paul Hermann Müller in 1939. DDT was used in the second half of World War II to limit the spread of the insect-borne diseases malaria and typhus among civilians and troops. Müller was awarded the Nobel Prize in Physiology or Medicine in 1948 "for his discovery of the high efficiency of DDT as a contact poison against several arthropods". The WHO's anti-malaria campaign of the 1950s and 1960s relied heavily on DDT and the results were promising, though there was a resurgence in developing countries afterwards.

<span class="mw-page-title-main">Insecticide</span> Pesticide used against insects

Insecticides are pesticides used to kill insects. They include ovicides and larvicides used against insect eggs and larvae, respectively. Acaricides, which kill mites and ticks, are not strictly insecticides, but are usually classified together with insecticides. The major use of Insecticides is agriculture, but they are also used in home and garden, industrial buildings, vector control and control of insect parasites of animals and humans. Insecticides are distinct from repellents, which repel but do not kill.

<span class="mw-page-title-main">Incense</span> Material that releases fragrant smoke when burnt

Incense is an aromatic biotic material that releases fragrant smoke when burnt. The term is used for either the material or the aroma. Incense is used for aesthetic reasons, religious worship, aromatherapy, meditation, and ceremonial reasons. It may also be used as a simple deodorant or insect repellent.

<span class="mw-page-title-main">Cypermethrin</span> Chemical compound

Cypermethrin (CP) is a synthetic pyrethroid used as an insecticide in large-scale commercial agricultural applications as well as in consumer products for domestic purposes. It behaves as a fast-acting neurotoxin in insects. It is easily degraded on soil and plants but can be effective for weeks when applied to indoor inert surfaces. It is a non-systemic and non-volatile insecticide that acts by contact and ingestion, used in agriculture and in pest control products. Exposure to sunlight, water and oxygen will accelerate its decomposition. Cypermethrin is highly toxic to fish, bees and aquatic insects, according to the National Pesticides Telecommunications Network (NPTN). It is found in many household ant and cockroach killers, including Raid, Ortho, Combat, ant chalk, and some products of Baygon in Southeast Asia.

Pyrethrum was a genus of several Old World plants now classified in either Chrysanthemum or Tanacetum which are cultivated as ornamentals for their showy flower heads. Pyrethrum continues to be used as a common name for plants formerly included in the genus Pyrethrum. Pyrethrum is also the name of a natural insecticide made from the dried flower heads of Chrysanthemum cinerariifolium and Chrysanthemum coccineum. The insecticidal compounds present in these species are pyrethrins.

<span class="mw-page-title-main">Piperonyl butoxide</span> Chemical compound

Piperonyl butoxide (PBO) is a pale yellow to light brown liquid organic compound used as an adjuvant component of pesticide formulations for synergy. That is, despite having no pesticidal activity of its own, it enhances the potency of certain pesticides such as carbamates, pyrethrins, pyrethroids, and rotenone. It is a semisynthetic derivative of safrole and is produced from the condensation of the sodium salt of 2-(2-butoxyethoxy) ethanol and the chloromethyl derivative of hydrogenated safrole (dihydrosafrole); or through 1,2-Methylenedioxybenzene.

<span class="mw-page-title-main">Pyrethrin</span> Class of organic chemical compounds with insecticidal properties

The pyrethrins are a class of organic compounds normally derived from Chrysanthemum cinerariifolium that have potent insecticidal activity by targeting the nervous systems of insects. Pyrethrin naturally occurs in chrysanthemum flowers and is often considered an organic insecticide when it is not combined with piperonyl butoxide or other synthetic adjuvants. Their insecticidal and insect-repellent properties have been known and used for thousands of years.

<span class="mw-page-title-main">Bifenthrin</span> Chemical compound

Bifenthrin is a pyrethroid insecticide. It is widely used against ant infestations.

<span class="mw-page-title-main">Pyrethroid</span> Class of insecticides

A pyrethroid is an organic compound similar to the natural pyrethrins, which are produced by the flowers of pyrethrums. Pyrethroids are used as commercial and household insecticides.

<span class="mw-page-title-main">Permethrin</span> Medication and insecticide

Permethrin is a medication and an insecticide. As a medication, it is used to treat scabies and lice. It is applied to the skin as a cream or lotion. As an insecticide, it can be sprayed onto outer clothing or mosquito nets to kill the insects that touch them.

<span class="mw-page-title-main">Allethrins</span> Class of synthetic chemicals used as insecticides

The allethrins are a group of related synthetic compounds used in insecticides. They are classified as pyrethroids, i.e. synthetic versions of pyrethrin, a chemical with insecticidal properties found naturally in Chrysanthemum flowers. They were first synthesized in the United States by Milton S. Schechter in 1949. Allethrin was the first pyrethroid.

<span class="mw-page-title-main">Deltamethrin</span> Chemical compound

Deltamethrin is a pyrethroid ester insecticide. Deltamethrin plays a key role in controlling malaria vectors, and is used in the manufacture of long-lasting insecticidal mosquito nets; however, resistance of mosquitos and bed bugs to deltamethrin has seen a widespread increase.

<span class="mw-page-title-main">Transfluthrin</span> Volatile pyrethroid insecticide used indoor against insects such as moths or mosquitoes

Transfluthrin is a fast-acting pyrethroid insecticide with low persistency. It has the molecular formula C15H12Cl2F4O2.

<span class="mw-page-title-main">Mortein</span> Australian pesticide brand

Mortein is an Australian brand of household insecticide owned by the British company Reckitt. Together with its sister product Aerogard, a popular insect repellent, Mortein is widely used in Australia and is marketed internationally. It is also available in New Zealand, India, Pakistan, Fiji, and the Comoros. The brand has been represented in television commercials by cartoon antagonist Louie the Fly.

<span class="mw-page-title-main">Phenothrin</span> Chemical compound

Phenothrin, also called sumithrin and d-phenothrin, is a synthetic pyrethroid that kills adult fleas and ticks. It has also been used to kill head lice in humans. d-Phenothrin is used as a component of aerosol insecticides for domestic use. It is often used with methoprene, an insect growth regulator that interrupts the insect's biological lifecycle by killing the eggs.

<span class="mw-page-title-main">Cyhalothrin</span> Synthetic pyrethroid used as insecticide

Cyhalothrin is an organic compound that, in specific isomeric forms, is used as a pesticide. It is a pyrethroid, a class of synthetic insecticides that mimic the structure and properties of the naturally occurring insecticide pyrethrin which is present in the flowers of Chrysanthemum cinerariifolium. Pyrethroids, such as cyhalothrin, are often preferred as an active ingredient in agricultural insecticides because they are more cost-effective and longer acting than natural pyrethrins. λ-and γ-cyhalothrin are now used to control insects and spider mites in crops including cotton, cereals, potatoes and vegetables.

<span class="mw-page-title-main">Prallethrin</span> Chemical compound

Prallethrin is a pyrethroid insecticide. Prallethrin 1.6% w/w liquid vaporizer is a repellent insecticide which is generally used for the control of mosquitoes in the household.

<i>Tanacetum cinerariifolium</i> Species of flowering plant

Tanacetum cinerariifolium is a species of flowering plant in the aster family, Asteraceae, and formerly part of the genus Pyrethrum, but now placed in the genus Chrysanthemum, or the genus Tanacetum by some biologists. It is called the Dalmatian chrysanthemum or Dalmatian pyrethrum, denoting its origin in that region of Europe (Dalmatia). It looks more like the common daisy than other pyrethrums do. Its flowers, typically white with yellow centers, grow from numerous fairly rigid stems. Plants have blue-green leaves and grow to 45 to 100 cm in height.

<span class="mw-page-title-main">Metofluthrin</span> Pyrethroid used as an insect repellent

Metofluthrin is a pyrethroid used as an insect repellent. The vapors of metofluthrin are highly effective and capable of repelling up to 97% of mosquitoes in field tests. Metofluthrin is used in a variety of consumer products, called emanators, for indoor and outdoor use. These products produce a vapor that protects an individual or area. Effectiveness is reduced by air movement. Metofluthrin is neurotoxic, and is not meant to be applied directly to human skin.

<span class="mw-page-title-main">Fenpropathrin</span> Chemical compound

Fenpropathrin, or fenopropathrin, is a widely used pyrethroid insecticide in agriculture and household. Fenpropathrin is an ingestion and contact synthetic pyrethroid. Its mode of action is similar to other natural (pyrethrum) and synthetic pyrethroids where in they interfere with the kinetics of voltage gated sodium channels causing paralysis and death of the pest. Fenpropathrin was the first of the light-stable synthetic pyrethroids to be synthesized in 1971, but it was not commercialized until 1980. Like other pyrethroids with an α-cyano group, fenpropathrin also belongs to the termed type II pyrethroids. Type II pyrethroids are a more potent toxicant than type I in depolarizing insect nerves. Application rates of fenpropathrin in agriculture according to US environmental protection agency (EPA) varies by crop but is not to exceed 0.4 lb ai/acre.

References

  1. McKean, Erin, ed. (2005). "Mosquito Coil". The New Oxford American Dictionary. Oxford University Press. p. 1105.
  2. 1 2 Liu, Weili; Zhang, Junfeng; Hashim, Jamal H.; Jalaludin, Juliana; Hashim, Zailina; Goldstein, Bernard D. (September 2003). "Mosquito Coil Emissions and Health Implications". Environmental Health Perspectives. 111 (12): 1454–1460. Bibcode:2003EnvHP.111.1454L. doi:10.1289/ehp.6286. PMC   1241646 . PMID   12948883.
  3. "Aromatica: History of pyrethrum". Bioaromatica Ltd. Archived from the original on 24 March 2010. Retrieved 31 October 2009.
  4. Debboun, Mustapha; Frances, Stephen P.; Strickman, Daniel (2007). Insect repellents: principles, methods, and uses . Boca Raton: CRC Press. pp.  6. ISBN   978-0-8493-7196-7.
  5. 1 2 International Business Organization of Osaka, Inc (2004). "Great People of Osaka: Eiichiro Ueyama - Developing and promoting insecticide together with pyrethrum". Osaka Business Update. 4. Archived from the original on 3 February 2010. Retrieved 31 October 2009.{{cite journal}}: |last= has generic name (help)
  6. Strickman, Daniel; Frances, Stephen P.; Debboun, Mustapha (2009). Prevention of Bug Bites, Stings, and Disease . New York: Oxford University Press. pp.  117. ISBN   978-0-19-536577-1.
  7. "IUPAC: global availability of information on agrochemicals : meperfluthrin". University of Hertfordshire. Retrieved 28 April 2017.
  8. Trumbull, Charles P., ed. (2000). "Disasters". Britannica Book of the Year. Vol. 2000. Encyclopædia Britannica, Inc. p. 161.
  9. Shu-Chen, Chen; Ruey-Hong, Wong; Li-Jie, Shiu; Ming-Chih, Chiou; Huei, Lee (2008). "Exposure to Mosquito Coil Smoke May be a Risk Factor for Lung Cancer in Taiwan". Journal of Epidemiology. 18 (1): 19–25. doi:10.2188/jea.18.19. PMC   4771599 . PMID   18305363.
  10. Zhang, Jie; Qi, Hui-Wei; Sun, Yu-Ping; Xie, Hui-Kang; Zhou, Cai-Cun (2015-04-01). "Mosquito coil exposure associated with small cell lung cancer: A report of three cases". Oncology Letters. 9 (4): 1667–1671. doi:10.3892/ol.2015.2922. ISSN   1792-1074. PMC   4356427 . PMID   25789020.
  11. Tang, Li; Lim, Wei-Yen; Eng, Philip; Leong, Swan Swan; Lim, Tow Keang; Ng, Alan W.K.; Tee, Augustine; Seow, Adeline (2010-09-01). "Lung Cancer in Chinese Women: Evidence for an Interaction between Tobacco Smoking and Exposure to Inhalants in the Indoor Environment". Environmental Health Perspectives. 118 (9): 1257–1260. Bibcode:2010EnvHP.118.1257T. doi:10.1289/ehp.0901587. ISSN   0091-6765. PMC   2944086 . PMID   20472525.
  12. Pauluhn, J; Mohr, U (May 2006). "Mosquito coil smoke inhalation toxicity. Part II: subchronic nose-only inhalation study in rats". Journal of Applied Toxicology. 26 (3): 279–92. doi:10.1002/jat.1139. PMID   16552726. S2CID   27054370.