Multi-commodity flow problem

Last updated

The multi-commodity flow problem is a network flow problem with multiple commodities (flow demands) between different source and sink nodes.

Contents

Definition

Given a flow network , where edge has capacity . There are commodities , defined by , where and is the source and sink of commodity , and is its demand. The variable defines the fraction of flow along edge , where in case the flow can be split among multiple paths, and otherwise (i.e. "single path routing"). Find an assignment of all flow variables which satisfies the following four constraints:

(1) Link capacity: The sum of all flows routed over a link does not exceed its capacity.

(2) Flow conservation on transit nodes: The amount of a flow entering an intermediate node is the same that exits the node.

(3) Flow conservation at the source: A flow must exit its source node completely.

(4) Flow conservation at the destination: A flow must enter its sink node completely.

Corresponding optimization problems

Load balancing is the attempt to route flows such that the utilization of all links is even, where

The problem can be solved e.g. by minimizing . A common linearization of this problem is the minimization of the maximum utilization , where

In the minimum cost multi-commodity flow problem, there is a cost for sending a flow on . You then need to minimize

In the maximum multi-commodity flow problem, the demand of each commodity is not fixed, and the total throughput is maximized by maximizing the sum of all demands

Relation to other problems

The minimum cost variant of the multi-commodity flow problem is a generalization of the minimum cost flow problem (in which there is merely one source and one sink ). Variants of the circulation problem are generalizations of all flow problems. That is, any flow problem can be viewed as a particular circulation problem. [1]

Usage

Routing and wavelength assignment (RWA) in optical burst switching of Optical Network would be approached via multi-commodity flow formulas, if the network is equipped with wavelength conversion at every node.

Register allocation can be modeled as an integer minimum cost multi-commodity flow problem: Values produced by instructions are source nodes, values consumed by instructions are sink nodes and registers as well as stack slots are edges. [2]

Solutions

In the decision version of problems, the problem of producing an integer flow satisfying all demands is NP-complete, [3] even for only two commodities and unit capacities (making the problem strongly NP-complete in this case).

If fractional flows are allowed, the problem can be solved in polynomial time through linear programming, [4] or through (typically much faster) fully polynomial time approximation schemes. [5]


Applications

Multicommodity flow is applied in the overlay routing in content delivery. [6]

External resources

Related Research Articles

<span class="mw-page-title-main">Discrete Fourier transform</span> Type of Fourier transform in discrete mathematics

In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration of the input sequence. An inverse DFT (IDFT) is a Fourier series, using the DTFT samples as coefficients of complex sinusoids at the corresponding DTFT frequencies. It has the same sample-values as the original input sequence. The DFT is therefore said to be a frequency domain representation of the original input sequence. If the original sequence spans all the non-zero values of a function, its DTFT is continuous, and the DFT provides discrete samples of one cycle. If the original sequence is one cycle of a periodic function, the DFT provides all the non-zero values of one DTFT cycle.

In mathematics, a product is the result of multiplication, or an expression that identifies objects to be multiplied, called factors. For example, 21 is the product of 3 and 7, and is the product of and . When one factor is an integer, the product is called a multiple.

The Ford–Fulkerson method or Ford–Fulkerson algorithm (FFA) is a greedy algorithm that computes the maximum flow in a flow network. It is sometimes called a "method" instead of an "algorithm" as the approach to finding augmenting paths in a residual graph is not fully specified or it is specified in several implementations with different running times. It was published in 1956 by L. R. Ford Jr. and D. R. Fulkerson. The name "Ford–Fulkerson" is often also used for the Edmonds–Karp algorithm, which is a fully defined implementation of the Ford–Fulkerson method.

In computer science and optimization theory, the max-flow min-cut theorem states that in a flow network, the maximum amount of flow passing from the source to the sink is equal to the total weight of the edges in a minimum cut, i.e., the smallest total weight of the edges which if removed would disconnect the source from the sink.

In numerical analysis, polynomial interpolation is the interpolation of a given bivariate data set by the polynomial of lowest possible degree that passes through the points of the dataset.

<span class="mw-page-title-main">Maximum flow problem</span> Computational problem in graph theory

In optimization theory, maximum flow problems involve finding a feasible flow through a flow network that obtains the maximum possible flow rate.

<span class="mw-page-title-main">Flow network</span> Directed graph where edges have a capacity

In graph theory, a flow network is a directed graph where each edge has a capacity and each edge receives a flow. The amount of flow on an edge cannot exceed the capacity of the edge. Often in operations research, a directed graph is called a network, the vertices are called nodes and the edges are called arcs. A flow must satisfy the restriction that the amount of flow into a node equals the amount of flow out of it, unless it is a source, which has only outgoing flow, or sink, which has only incoming flow. A network can be used to model traffic in a computer network, circulation with demands, fluids in pipes, currents in an electrical circuit, or anything similar in which something travels through a network of nodes.

In machine learning, backpropagation is a gradient estimation method commonly used for training neural networks to compute the network parameter updates.

In mathematics, differential algebra is, broadly speaking, the area of mathematics consisting in the study of differential equations and differential operators as algebraic objects in view of deriving properties of differential equations and operators without computing the solutions, similarly as polynomial algebras are used for the study of algebraic varieties, which are solution sets of systems of polynomial equations. Weyl algebras and Lie algebras may be considered as belonging to differential algebra.

The minimum-cost flow problem (MCFP) is an optimization and decision problem to find the cheapest possible way of sending a certain amount of flow through a flow network. A typical application of this problem involves finding the best delivery route from a factory to a warehouse where the road network has some capacity and cost associated. The minimum cost flow problem is one of the most fundamental among all flow and circulation problems because most other such problems can be cast as a minimum cost flow problem and also that it can be solved efficiently using the network simplex algorithm.

The circulation problem and its variants are a generalisation of network flow problems, with the added constraint of a lower bound on edge flows, and with flow conservation also being required for the source and sink. In variants of the problem, there are multiple commodities flowing through the network, and a cost on the flow.

<span class="mw-page-title-main">Vehicle routing problem</span> Optimization problem

The vehicle routing problem (VRP) is a combinatorial optimization and integer programming problem which asks "What is the optimal set of routes for a fleet of vehicles to traverse in order to deliver to a given set of customers?" It generalises the travelling salesman problem (TSP). It first appeared in a paper by George Dantzig and John Ramser in 1959, in which the first algorithmic approach was written and was applied to petrol deliveries. Often, the context is that of delivering goods located at a central depot to customers who have placed orders for such goods. The objective of the VRP is to minimize the total route cost. In 1964, Clarke and Wright improved on Dantzig and Ramser's approach using an effective greedy algorithm called the savings algorithm.

The Price of Anarchy (PoA) is a concept in economics and game theory that measures how the efficiency of a system degrades due to selfish behavior of its agents. It is a general notion that can be extended to diverse systems and notions of efficiency. For example, consider the system of transportation of a city and many agents trying to go from some initial location to a destination. Here, efficiency means the average time for an agent to reach the destination. In the 'centralized' solution, a central authority can tell each agent which path to take in order to minimize the average travel time. In the 'decentralized' version, each agent chooses its own path. The Price of Anarchy measures the ratio between average travel time in the two cases.

The block Wiedemann algorithm for computing kernel vectors of a matrix over a finite field is a generalization by Don Coppersmith of an algorithm due to Doug Wiedemann.

In queueing theory, a discipline within the mathematical theory of probability, the backpressure routing algorithm is a method for directing traffic around a queueing network that achieves maximum network throughput, which is established using concepts of Lyapunov drift. Backpressure routing considers the situation where each job can visit multiple service nodes in the network. It is an extension of max-weight scheduling where each job visits only a single service node.

In machine learning, a ranking SVM is a variant of the support vector machine algorithm, which is used to solve certain ranking problems. The ranking SVM algorithm was published by Thorsten Joachims in 2002. The original purpose of the algorithm was to improve the performance of an internet search engine. However, it was found that ranking SVM also can be used to solve other problems such as Rank SIFT.

The generalized distributive law (GDL) is a generalization of the distributive property which gives rise to a general message passing algorithm. It is a synthesis of the work of many authors in the information theory, digital communications, signal processing, statistics, and artificial intelligence communities. The law and algorithm were introduced in a semi-tutorial by Srinivas M. Aji and Robert J. McEliece with the same title.

Transshipment problems form a subgroup of transportation problems, where transshipment is allowed. In transshipment, transportation may or must go through intermediate nodes, possibly changing modes of transport.

Approximate max-flow min-cut theorems are mathematical propositions in network flow theory. Approximate max-flow min-cut theorems deal with the relationship between maximum flow rate ("max-flow") and minimum cut ("min-cut") in a multi-commodity flow problem. The theorems have enabled the development of approximation algorithms for use in graph partition and related problems.

Market equilibrium computation is a computational problem in the intersection of economics and computer science. The input to this problem is a market, consisting of a set of resources and a set of agents. There are various kinds of markets, such as Fisher market and Arrow–Debreu market, with divisible or indivisible resources. The required output is a competitive equilibrium, consisting of a price-vector, and an allocation, such that each agent gets the best bundle possible given the budget, and the market clears.

References

  1. Ahuja, Ravindra K.; Magnanti, Thomas L.; Orlin, James B. (1993). Network Flows. Theory, Algorithms, and Applications. Prentice Hall.
  2. Koes, David Ryan (2009). "Towards a more principled compiler: Register allocation and instruction selection revisited" (PhD). Carnegie Mellon University. S2CID   26416771.
  3. S. Even and A. Itai and A. Shamir (1976). "On the Complexity of Timetable and Multicommodity Flow Problems". SIAM Journal on Computing. 5 (4). SIAM: 691–703. doi:10.1137/0205048.Even, S.; Itai, A.; Shamir, A. (1975). "On the complexity of time table and multi-commodity flow problems". 16th Annual Symposium on Foundations of Computer Science (SFCS 1975). pp. 184–193. doi:10.1109/SFCS.1975.21. S2CID   18449466.
  4. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein (2009). "29". Introduction to Algorithms (3rd ed.). MIT Press and McGraw–Hill. p. 862. ISBN   978-0-262-03384-8.{{cite book}}: CS1 maint: multiple names: authors list (link)
  5. George Karakostas (2002). "Faster approximation schemes for fractional multicommodity flow problems". Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms. pp.  166–173. ISBN   0-89871-513-X.
  6. Algorithmic Nuggets in Content Delivery sigcomm.org

Add: Jean-Patrice Netter, Flow Augmenting Meshings: a primal type of approach to the maximum integer flow in a multi-commodity network, Ph.D dissertation Johns Hopkins University, 1971