Multibody simulation

Last updated

Multibody simulation (MBS) is a method of numerical simulation in which multibody systems are composed of various rigid or elastic bodies. Connections between the bodies can be modeled with kinematic constraints (such as joints) or force elements (such as spring dampers). Unilateral constraints and Coulomb-friction can also be used to model frictional contacts between bodies. [1] Multibody simulation is a useful tool for conducting motion analysis. It is often used during product development to evaluate characteristics of comfort, safety, and performance. [2] For example, multibody simulation has been widely used since the 1990s as a component of automotive suspension design. [3] It can also be used to study issues of biomechanics, with applications including sports medicine, osteopathy, and human-machine interaction. [4] [5] [6]

The heart of any multibody simulation software program is the solver. The solver is a set of computation algorithms that solve equations of motion. Types of components that can be studied through multibody simulation range from electronic control systems to noise, vibration and harshness. [7] Complex models such as engines are composed of individually designed components, e.g. pistons/crankshafts. [8]

The MBS process often can be divided in 5 main activities. The first activity of the MBS process chain is the” 3D CAD master model”, in which product developers, designers and engineers are using the CAD system to generate a CAD model and its assembly structure related to given specifications. This 3D CAD master model is converted during the activity “Data transfer” to the MBS input data formats i.e. STEP. The “MBS Modeling” is the most complex activity in the process chain. Following rules and experiences, the 3D model in MBS format, multiple boundaries, kinematics, forces, moments or degrees of freedom are used as input to generate the MBS model. Engineers have to use MBS software and their knowledge and skills in the field of engineering mechanics and machine dynamics to build the MBS model including joints and links. The generated MBS model is used during the next activity “Simulation”. Simulations, which are specified by time increments and boundaries like starting conditions are run by MBS Software. It is also possible to perform MBS simulations using free and open source packages. The last activity is the “Analysis and evaluation”. Engineers use case-dependent directives to analyze and evaluate moving paths, speeds, accelerations, forces or moments. The results are used to enable releases or to improve the MBS model, in case the results are insufficient. One of the most important benefits of the MBS process chain is the usability of the results to optimize the 3D CAD master model components. Due to the fact that the process chain enables the optimization of component design, the resulting loops can be used to achieve a high level of design and MBS model optimization in an iterative process. [9]

Related Research Articles

<span class="mw-page-title-main">Mechanical engineering</span> Engineering discipline

Mechanical engineering is the study of physical machines that may involve force and movement. It is an engineering branch that combines engineering physics and mathematics principles with materials science, to design, analyze, manufacture, and maintain mechanical systems. It is one of the oldest and broadest of the engineering branches.

<span class="mw-page-title-main">Computer-aided design</span> Constructing a product by means of computer

Computer-Aided Design (CAD) is the use of computers to aid in the creation, modification, analysis, or optimization of a design. This software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation, and to create a database for manufacturing. Designs made through CAD software are helpful in protecting products and inventions when used in patent applications. CAD output is often in the form of electronic files for print, machining, or other manufacturing operations. The terms computer-aided drafting (CAD) and computer-aided design and drafting (CADD) are also used.

<span class="mw-page-title-main">Computer-aided engineering</span> Use of software for engineering design and analysis

Computer-aided engineering can be defined as the general usage of technology to aid in tasks related to engineering analysis. Any use of technology to solve or assist engineering issues falls under this umbrella.

<span class="mw-page-title-main">Product lifecycle</span> Duration of processing of products from inception, to engineering, design & manufacture

In industry, product lifecycle management (PLM) is the process of managing the entire lifecycle of a product from its inception through the engineering, design and manufacture, as well as the service and disposal of manufactured products. PLM integrates people, data, processes, and business systems and provides a product information backbone for companies and their extended enterprises.

Multibody system is the study of the dynamic behavior of interconnected rigid or flexible bodies, each of which may undergo large translational and rotational displacements.

Automotive suspension design is an aspect of automotive engineering, concerned with designing the suspension for cars and trucks. Suspension design for other vehicles is similar, though the process may not be as well established.

<span class="mw-page-title-main">Manufacturing engineering</span> Branch of engineering

Manufacturing engineering or production engineering is a branch of professional engineering that shares many common concepts and ideas with other fields of engineering such as mechanical, chemical, electrical, and industrial engineering. Manufacturing engineering requires the ability to plan the practices of manufacturing; to research and to develop tools, processes, machines and equipment; and to integrate the facilities and systems for producing quality products with the optimum expenditure of capital.

Femap is an engineering analysis program sold by Siemens Digital Industries Software that is used to build finite element models of complex engineering problems ("pre-processing") and view solution results ("post-processing"). It runs on Microsoft Windows and provides CAD import, modeling and meshing tools to create a finite element model, as well as postprocessing functionality that allows mechanical engineers to interpret analysis results. The finite element method allows engineers to virtually model components, assemblies, or systems to determine behavior under a given set of boundary conditions, and is typically used in the design process to reduce costly prototyping and testing, evaluate differing designs and materials, and for structural optimization to reduce weight.

Contact dynamics deals with the motion of multibody systems subjected to unilateral contacts and friction. Such systems are omnipresent in many multibody dynamics applications. Consider for example

<span class="mw-page-title-main">T-FLEX CAD</span> Parametric CAD software application

T-FLEX CAD (T-FLEX) – is a Russian-made parametric computer-aided design (CAD) software application for 2D design, drafting, and 3D solid modeling based on commercial Parasolid geometric kernel. It's primarily developed and distributed by Russian software company Top Systems based in Russia. Supported platforms are limited to Microsoft Windows. Amongst features T-FLEX offers support for various CAD formats and diverse localizations.

<span class="mw-page-title-main">ScanIP</span>

Synopsys Simpleware ScanIP is a 3D image processing and model generation software program developed by Synopsys Inc. to visualise, analyse, quantify, segment and export 3D image data from magnetic resonance imaging (MRI), computed tomography (CT), microtomography and other modalities for computer-aided design (CAD), finite element analysis (FEA), computational fluid dynamics (CFD), and 3D printing. The software is used in the life sciences, materials science, nondestructive testing, reverse engineering and petrophysics.

<span class="mw-page-title-main">SimulationX</span> Software application

SimulationX is a CAE software application running on Microsoft Windows for the physical simulation of technical systems. It is developed and sold by ESI Group.

OptiY is a design environment software that provides modern optimization strategies and state of the art probabilistic algorithms for uncertainty, reliability, robustness, sensitivity analysis, data-mining and meta-modeling.

Optimus is a Process Integration and Design Optimization (PIDO) platform developed by Noesis Solutions. Noesis Solutions takes part in key research projects, such as PHAROS and MATRIX.

Simcenter Amesim is a commercial simulation software for the modeling and analysis of multi-domain systems. It is part of systems engineering domain and falls into the mechatronic engineering field.

Industrial and production engineering (IPE) is an interdisciplinary engineering discipline that includes manufacturing technology, engineering sciences, management science, and optimization of complex processes, systems, or organizations. It is concerned with the understanding and application of engineering procedures in manufacturing processes and production methods. Industrial engineering dates back all the way to the industrial revolution, initiated in 1700s by Sir Adam Smith, Henry Ford, Eli Whitney, Frank Gilbreth and Lilian Gilbreth, Henry Gantt, F.W. Taylor, etc. After the 1970s, industrial and production engineering developed worldwide and started to widely use automation and robotics. Industrial and production engineering includes three areas: Mechanical engineering, industrial engineering, and management science.

Predictive engineering analytics (PEA) is a development approach for the manufacturing industry that helps with the design of complex products. It concerns the introduction of new software tools, the integration between those, and a refinement of simulation and testing processes to improve collaboration between analysis teams that handle different applications. This is combined with intelligent reporting and data analytics. The objective is to let simulation drive the design, to predict product behavior rather than to react on issues which may arise, and to install a process that lets design continue after product delivery.

The Virtual Soldier Research program (VSR) is a research group within the University of Iowa Center for Computer-Aided Design (CCAD). VSR was founded by Professor Karim Abdel-Malek in 2003 through external funding from the US Army Tank Automotive Command (TACOM) to put the Warfighter at the center of US Army product designs. Professor Abdel-Malek's background in robotics and the use of rigorous mathematical formulations was the first introduction of mathematical kinematics to the field of Digital Human Modeling (DHM). Prior to 2003, all DHM models were based on experimental data that use lookup tables to enable the posturing of simple mannequins. Indeed, the first version of Santos, presented at the a DHM conference was met with great success because it was the first fully articulated digital human model that behaved as humans do, whereby joints had constraints and a user could pull on an arm for example and as a result the entire body would respond accordingly. Cost functions representing human performance measures were used to drive the motion within the optimization formulation. Seated posture prediction for example was accomplished by simply providing the seat geometry. The posture prediction methodology was subsequently validated Later on, the Predictive Dynamics method was created and used the same optimization technique with the addition of 3D laws of motion. The Santos system includes many aspects of physiology modeling, thermal, hand model, grasp prediction, gait analysis including stability, mobility, suitability, survivability, maintainability, training, and many other metrics typically used in the assessment of human performance for the Warfighter.

<span class="mw-page-title-main">MSC Adams</span> Multibody dynamics simulation software system

MSC ADAMS is a multibody dynamics simulation software system. It is currently owned by MSC Software Corporation. The simulation software solver runs mainly on Fortran and more recently C++ as well. According to the publisher, Adams is the most widely used multibody dynamics simulation software. The software package runs on both Windows and Linux.

References

  1. Schindler, Thorsten. "Multi-Body Simulation". Courses: Technische Universität München. Technische Universität München. Retrieved 20 August 2013.
  2. Larsson, Tobias. "Multibody Dynamic Simulation in Product Development" (PDF). Division of Computer Aided Design Department of Mechanical Engineering Luleå University of Technology. Luleå University of Technology. Retrieved 29 August 2013.
  3. Blundell, Mike and Damian Harty (2004). The Multibody Systems Approach to Vehicle Dynamics. Oxford, MA: Elsevier Butterworth-Heinemann. ISBN   0750651121.
  4. Al Nazar, R.; T. Rantalainen; A. Heinonen; H. Sievänend; A. Mikkola (2008). "Flexible multibody simulation approach in the analysis of tibial strain during walking" (PDF). Journal of Biomechanics. 41 (5): 1036–1043. doi:10.1016/j.jbiomech.2007.12.002. hdl: 10536/DRO/DU:30036187 . PMID   18191865.
  5. O’Riordain, K.; P.M. Thomas; J.P. Phillips; M.D. Gilchrist (August 2003). "Reconstruction of real world head injury accidents resulting from falls using multibody dynamics". Clinical Biomechanics. 18 (7): 590–600. doi:10.1016/S0268-0033(03)00111-6. hdl: 10197/5951 . PMID   12880706. S2CID   41827906.
  6. "Industrial Sectors: Biomechanics". SIMPACK. SIMPACK AG. Retrieved 27 August 2013.
  7. "Definition of MultiBody Dynamics Simulation". Function Bay: RecurDyn. Retrieved 20 August 2013.
  8. "SimMechanics Introduction". MathWorks. Retrieved 20 August 2013.
  9. Faath, A. and Anderl, R. Interdisciplinary and Consistent Use of a 3D CAD Model for CAx Education in Engineering Studies. In ASME 2016 International Mechanical Engineering Congress and Exposition (pp. V005T06A031-V005T06A031). American Society of Mechanical Engineers. November 2016