Multilinear multiplication Last updated September 30, 2025 Abstract definition Let F {\displaystyle F} be a field of characteristic zero, such as R {\displaystyle \mathbb {R} } or C {\displaystyle \mathbb {C} } . Let V k {\displaystyle V_{k}} be a finite-dimensional vector space over F {\displaystyle F} , and let A ∈ V 1 ⊗ V 2 ⊗ ⋯ ⊗ V d {\displaystyle {\mathcal {A}}\in V_{1}\otimes V_{2}\otimes \cdots \otimes V_{d}} be an order-d simple tensor , i.e., there exist some vectors v k ∈ V k {\displaystyle \mathbf {v} _{k}\in V_{k}} such that A = v 1 ⊗ v 2 ⊗ ⋯ ⊗ v d {\displaystyle {\mathcal {A}}=\mathbf {v} _{1}\otimes \mathbf {v} _{2}\otimes \cdots \otimes \mathbf {v} _{d}} . If we are given a collection of linear maps A k : V k → W k {\displaystyle A_{k}:V_{k}\to W_{k}} , then the multilinear multiplication of A {\displaystyle {\mathcal {A}}} with ( A 1 , A 2 , … , A d ) {\displaystyle (A_{1},A_{2},\ldots ,A_{d})} is defined [ 1] as the action on A {\displaystyle {\mathcal {A}}} of the tensor product of these linear maps, [ 2] namely
A 1 ⊗ A 2 ⊗ ⋯ ⊗ A d : V 1 ⊗ V 2 ⊗ ⋯ ⊗ V d → W 1 ⊗ W 2 ⊗ ⋯ ⊗ W d , v 1 ⊗ v 2 ⊗ ⋯ ⊗ v d ↦ A 1 ( v 1 ) ⊗ A 2 ( v 2 ) ⊗ ⋯ ⊗ A d ( v d ) {\displaystyle {\begin{aligned}A_{1}\otimes A_{2}\otimes \cdots \otimes A_{d}:V_{1}\otimes V_{2}\otimes \cdots \otimes V_{d}&\to W_{1}\otimes W_{2}\otimes \cdots \otimes W_{d},\\\mathbf {v} _{1}\otimes \mathbf {v} _{2}\otimes \cdots \otimes \mathbf {v} _{d}&\mapsto A_{1}(\mathbf {v} _{1})\otimes A_{2}(\mathbf {v} _{2})\otimes \cdots \otimes A_{d}(\mathbf {v} _{d})\end{aligned}}}
Since the tensor product of linear maps is itself a linear map, [ 2] and because every tensor admits a tensor rank decomposition , [ 1] the above expression extends linearly to all tensors. That is, for a general tensor A ∈ V 1 ⊗ V 2 ⊗ ⋯ ⊗ V d {\displaystyle {\mathcal {A}}\in V_{1}\otimes V_{2}\otimes \cdots \otimes V_{d}} , the multilinear multiplication is
B := ( A 1 ⊗ A 2 ⊗ ⋯ ⊗ A d ) ( A ) = ( A 1 ⊗ A 2 ⊗ ⋯ ⊗ A d ) ( ∑ i = 1 r a i 1 ⊗ a i 2 ⊗ ⋯ ⊗ a i d ) = ∑ i = 1 r A 1 ( a i 1 ) ⊗ A 2 ( a i 2 ) ⊗ ⋯ ⊗ A d ( a i d ) {\displaystyle {\begin{aligned}&{\mathcal {B}}:=(A_{1}\otimes A_{2}\otimes \cdots \otimes A_{d})({\mathcal {A}})\\[4pt]={}&(A_{1}\otimes A_{2}\otimes \cdots \otimes A_{d})\left(\sum _{i=1}^{r}\mathbf {a} _{i}^{1}\otimes \mathbf {a} _{i}^{2}\otimes \cdots \otimes \mathbf {a} _{i}^{d}\right)\\[5pt]={}&\sum _{i=1}^{r}A_{1}(\mathbf {a} _{i}^{1})\otimes A_{2}(\mathbf {a} _{i}^{2})\otimes \cdots \otimes A_{d}(\mathbf {a} _{i}^{d})\end{aligned}}}
where A = ∑ i = 1 r a i 1 ⊗ a i 2 ⊗ ⋯ ⊗ a i d {\textstyle {\mathcal {A}}=\sum _{i=1}^{r}\mathbf {a} _{i}^{1}\otimes \mathbf {a} _{i}^{2}\otimes \cdots \otimes \mathbf {a} _{i}^{d}} with a i k ∈ V k {\displaystyle \mathbf {a} _{i}^{k}\in V_{k}} is one of A {\displaystyle {\mathcal {A}}} 's tensor rank decompositions. The validity of the above expression is not limited to a tensor rank decomposition; in fact, it is valid for any expression of A {\displaystyle {\mathcal {A}}} as a linear combination of pure tensors, which follows from the universal property of the tensor product .
It is standard to use the following shorthand notations in the literature for multilinear multiplications:( A 1 , A 2 , … , A d ) ⋅ A := ( A 1 ⊗ A 2 ⊗ ⋯ ⊗ A d ) ( A ) {\displaystyle (A_{1},A_{2},\ldots ,A_{d})\cdot {\mathcal {A}}:=(A_{1}\otimes A_{2}\otimes \cdots \otimes A_{d})({\mathcal {A}})} andA k ⋅ k A := ( Id V 1 , … , Id V k − 1 , A k , Id V k + 1 , … , Id V d ) ⋅ A , {\displaystyle A_{k}\cdot _{k}{\mathcal {A}}:=(\operatorname {Id} _{V_{1}},\ldots ,\operatorname {Id} _{V_{k-1}},A_{k},\operatorname {Id} _{V_{k+1}},\ldots ,\operatorname {Id} _{V_{d}})\cdot {\mathcal {A}},} where Id V k : V k → V k {\displaystyle \operatorname {Id} _{V_{k}}:V_{k}\to V_{k}} is the identity operator .
Definition in coordinates In computational multilinear algebra it is conventional to work in coordinates. Assume that an inner product is fixed on V k {\displaystyle V_{k}} and let V k ∗ {\displaystyle V_{k}^{*}} denote the dual vector space of V k {\displaystyle V_{k}} . Let { e 1 k , … , e n k k } {\displaystyle \{e_{1}^{k},\ldots ,e_{n_{k}}^{k}\}} be a basis for V k {\displaystyle V_{k}} , let { ( e 1 k ) ∗ , … , ( e n k k ) ∗ } {\displaystyle \{(e_{1}^{k})^{*},\ldots ,(e_{n_{k}}^{k})^{*}\}} be the dual basis, and let { f 1 k , … , f m k k } {\displaystyle \{f_{1}^{k},\ldots ,f_{m_{k}}^{k}\}} be a basis for W k {\displaystyle W_{k}} . The linear map M k = ∑ i = 1 m k ∑ j = 1 n k m i , j ( k ) f i k ⊗ ( e j k ) ∗ {\textstyle M_{k}=\sum _{i=1}^{m_{k}}\sum _{j=1}^{n_{k}}m_{i,j}^{(k)}f_{i}^{k}\otimes (e_{j}^{k})^{*}} is then represented by the matrix M ^ k = [ m i , j ( k ) ] ∈ F m k × n k {\displaystyle {\widehat {M}}_{k}=[m_{i,j}^{(k)}]\in F^{m_{k}\times n_{k}}} . Likewise, with respect to the standard tensor product basis { e j 1 1 ⊗ e j 2 2 ⊗ ⋯ ⊗ e j d d } j 1 , j 2 , … , j d {\displaystyle \{e_{j_{1}}^{1}\otimes e_{j_{2}}^{2}\otimes \cdots \otimes e_{j_{d}}^{d}\}_{j_{1},j_{2},\ldots ,j_{d}}} , the abstract tensorA = ∑ j 1 = 1 n 1 ∑ j 2 = 1 n 2 ⋯ ∑ j d = 1 n d a j 1 , j 2 , … , j d e j 1 1 ⊗ e j 2 2 ⊗ ⋯ ⊗ e j d d {\displaystyle {\mathcal {A}}=\sum _{j_{1}=1}^{n_{1}}\sum _{j_{2}=1}^{n_{2}}\cdots \sum _{j_{d}=1}^{n_{d}}a_{j_{1},j_{2},\ldots ,j_{d}}e_{j_{1}}^{1}\otimes e_{j_{2}}^{2}\otimes \cdots \otimes e_{j_{d}}^{d}} is represented by the multidimensional array A ^ = [ a j 1 , j 2 , … , j d ] ∈ F n 1 × n 2 × ⋯ × n d {\displaystyle {\widehat {\mathcal {A}}}=[a_{j_{1},j_{2},\ldots ,j_{d}}]\in F^{n_{1}\times n_{2}\times \cdots \times n_{d}}} . Observe that A ^ = ∑ j 1 = 1 n 1 ∑ j 2 = 1 n 2 ⋯ ∑ j d = 1 n d a j 1 , j 2 , … , j d e j 1 1 ⊗ e j 2 2 ⊗ ⋯ ⊗ e j d d , {\displaystyle {\widehat {\mathcal {A}}}=\sum _{j_{1}=1}^{n_{1}}\sum _{j_{2}=1}^{n_{2}}\cdots \sum _{j_{d}=1}^{n_{d}}a_{j_{1},j_{2},\ldots ,j_{d}}\mathbf {e} _{j_{1}}^{1}\otimes \mathbf {e} _{j_{2}}^{2}\otimes \cdots \otimes \mathbf {e} _{j_{d}}^{d},}
where e j k ∈ F n k {\displaystyle \mathbf {e} _{j}^{k}\in F^{n_{k}}} is the j th standard basis vector of F n k {\displaystyle F^{n_{k}}} and the tensor product of vectors is the affine Segre map ⊗ : ( v ( 1 ) , v ( 2 ) , … , v ( d ) ) ↦ [ v i 1 ( 1 ) v i 2 ( 2 ) ⋯ v i d ( d ) ] i 1 , i 2 , … , i d {\displaystyle \otimes :(\mathbf {v} ^{(1)},\mathbf {v} ^{(2)},\ldots ,\mathbf {v} ^{(d)})\mapsto [v_{i_{1}}^{(1)}v_{i_{2}}^{(2)}\cdots v_{i_{d}}^{(d)}]_{i_{1},i_{2},\ldots ,i_{d}}} . It follows from the above choices of bases that the multilinear multiplication B = ( M 1 , M 2 , … , M d ) ⋅ A {\displaystyle {\mathcal {B}}=(M_{1},M_{2},\ldots ,M_{d})\cdot {\mathcal {A}}} becomes
B ^ = ( M ^ 1 , M ^ 2 , … , M ^ d ) ⋅ ∑ j 1 = 1 n 1 ∑ j 2 = 1 n 2 ⋯ ∑ j d = 1 n d a j 1 , j 2 , … , j d e j 1 1 ⊗ e j 2 2 ⊗ ⋯ ⊗ e j d d = ∑ j 1 = 1 n 1 ∑ j 2 = 1 n 2 ⋯ ∑ j d = 1 n d a j 1 , j 2 , … , j d ( M ^ 1 , M ^ 2 , … , M ^ d ) ⋅ ( e j 1 1 ⊗ e j 2 2 ⊗ ⋯ ⊗ e j d d ) = ∑ j 1 = 1 n 1 ∑ j 2 = 1 n 2 ⋯ ∑ j d = 1 n d a j 1 , j 2 , … , j d ( M ^ 1 e j 1 1 ) ⊗ ( M ^ 2 e j 2 2 ) ⊗ ⋯ ⊗ ( M ^ d e j d d ) . {\displaystyle {\begin{aligned}{\widehat {\mathcal {B}}}&=({\widehat {M}}_{1},{\widehat {M}}_{2},\ldots ,{\widehat {M}}_{d})\cdot \sum _{j_{1}=1}^{n_{1}}\sum _{j_{2}=1}^{n_{2}}\cdots \sum _{j_{d}=1}^{n_{d}}a_{j_{1},j_{2},\ldots ,j_{d}}\mathbf {e} _{j_{1}}^{1}\otimes \mathbf {e} _{j_{2}}^{2}\otimes \cdots \otimes \mathbf {e} _{j_{d}}^{d}\\&=\sum _{j_{1}=1}^{n_{1}}\sum _{j_{2}=1}^{n_{2}}\cdots \sum _{j_{d}=1}^{n_{d}}a_{j_{1},j_{2},\ldots ,j_{d}}({\widehat {M}}_{1},{\widehat {M}}_{2},\ldots ,{\widehat {M}}_{d})\cdot (\mathbf {e} _{j_{1}}^{1}\otimes \mathbf {e} _{j_{2}}^{2}\otimes \cdots \otimes \mathbf {e} _{j_{d}}^{d})\\&=\sum _{j_{1}=1}^{n_{1}}\sum _{j_{2}=1}^{n_{2}}\cdots \sum _{j_{d}=1}^{n_{d}}a_{j_{1},j_{2},\ldots ,j_{d}}({\widehat {M}}_{1}\mathbf {e} _{j_{1}}^{1})\otimes ({\widehat {M}}_{2}\mathbf {e} _{j_{2}}^{2})\otimes \cdots \otimes ({\widehat {M}}_{d}\mathbf {e} _{j_{d}}^{d}).\end{aligned}}}
The resulting tensor B ^ {\displaystyle {\widehat {\mathcal {B}}}} lives in F m 1 × m 2 × ⋯ × m d {\displaystyle F^{m_{1}\times m_{2}\times \cdots \times m_{d}}} .
Element-wise definition From the above expression, an element-wise definition of the multilinear multiplication is obtained. Indeed, since B ^ {\displaystyle {\widehat {\mathcal {B}}}} is a multidimensional array, it may be expressed as B ^ = ∑ j 1 = 1 n 1 ∑ j 2 = 1 n 2 ⋯ ∑ j d = 1 n d b j 1 , j 2 , … , j d e j 1 1 ⊗ e j 2 2 ⊗ ⋯ ⊗ e j d d , {\displaystyle {\widehat {\mathcal {B}}}=\sum _{j_{1}=1}^{n_{1}}\sum _{j_{2}=1}^{n_{2}}\cdots \sum _{j_{d}=1}^{n_{d}}b_{j_{1},j_{2},\ldots ,j_{d}}\mathbf {e} _{j_{1}}^{1}\otimes \mathbf {e} _{j_{2}}^{2}\otimes \cdots \otimes \mathbf {e} _{j_{d}}^{d},} where b j 1 , j 2 , … , j d ∈ F {\displaystyle b_{j_{1},j_{2},\ldots ,j_{d}}\in F} are the coefficients. Then it follows from the above formulae that
( ( e i 1 1 ) T , ( e i 2 2 ) T , … , ( e i d d ) T ) ⋅ B ^ = ∑ j 1 = 1 n 1 ∑ j 2 = 1 n 2 ⋯ ∑ j d = 1 n d b j 1 , j 2 , … , j d ( ( e i 1 1 ) T e j 1 1 ) ⊗ ( ( e i 2 2 ) T e j 2 2 ) ⊗ ⋯ ⊗ ( ( e i d d ) T e j d d ) = ∑ j 1 = 1 n 1 ∑ j 2 = 1 n 2 ⋯ ∑ j d = 1 n d b j 1 , j 2 , … , j d δ i 1 , j 1 ⋅ δ i 2 , j 2 ⋯ δ i d , j d = b i 1 , i 2 , … , i d , {\displaystyle {\begin{aligned}&\left((\mathbf {e} _{i_{1}}^{1})^{T},(\mathbf {e} _{i_{2}}^{2})^{T},\ldots ,(\mathbf {e} _{i_{d}}^{d})^{T}\right)\cdot {\widehat {\mathcal {B}}}\\={}&\sum _{j_{1}=1}^{n_{1}}\sum _{j_{2}=1}^{n_{2}}\cdots \sum _{j_{d}=1}^{n_{d}}b_{j_{1},j_{2},\ldots ,j_{d}}\left((\mathbf {e} _{i_{1}}^{1})^{T}\mathbf {e} _{j_{1}}^{1}\right)\otimes \left((\mathbf {e} _{i_{2}}^{2})^{T}\mathbf {e} _{j_{2}}^{2}\right)\otimes \cdots \otimes \left((\mathbf {e} _{i_{d}}^{d})^{T}\mathbf {e} _{j_{d}}^{d}\right)\\={}&\sum _{j_{1}=1}^{n_{1}}\sum _{j_{2}=1}^{n_{2}}\cdots \sum _{j_{d}=1}^{n_{d}}b_{j_{1},j_{2},\ldots ,j_{d}}\delta _{i_{1},j_{1}}\cdot \delta _{i_{2},j_{2}}\cdots \delta _{i_{d},j_{d}}\\={}&b_{i_{1},i_{2},\ldots ,i_{d}},\end{aligned}}}
where δ i , j {\displaystyle \delta _{i,j}} is the Kronecker delta . Hence, if B = ( M 1 , M 2 , … , M d ) ⋅ A {\displaystyle {\mathcal {B}}=(M_{1},M_{2},\ldots ,M_{d})\cdot {\mathcal {A}}} , then
b i 1 , i 2 , … , i d = ( ( e i 1 1 ) T , ( e i 2 2 ) T , … , ( e i d d ) T ) ⋅ B ^ = ( ( e i 1 1 ) T , ( e i 2 2 ) T , … , ( e i d d ) T ) ⋅ ( M ^ 1 , M ^ 2 , … , M ^ d ) ⋅ ∑ j 1 = 1 n 1 ∑ j 2 = 1 n 2 ⋯ ∑ j d = 1 n d a j 1 , j 2 , … , j d e j 1 1 ⊗ e j 2 2 ⊗ ⋯ ⊗ e j d d = ∑ j 1 = 1 n 1 ∑ j 2 = 1 n 2 ⋯ ∑ j d = 1 n d a j 1 , j 2 , … , j d ( ( e i 1 1 ) T M ^ 1 e j 1 1 ) ⊗ ( ( e i 2 2 ) T M ^ 2 e j 2 2 ) ⊗ ⋯ ⊗ ( ( e i d d ) T M ^ d e j d d ) = ∑ j 1 = 1 n 1 ∑ j 2 = 1 n 2 ⋯ ∑ j d = 1 n d a j 1 , j 2 , … , j d m i 1 , j 1 ( 1 ) ⋅ m i 2 , j 2 ( 2 ) ⋯ m i d , j d ( d ) , {\displaystyle {\begin{aligned}&b_{i_{1},i_{2},\ldots ,i_{d}}=\left((\mathbf {e} _{i_{1}}^{1})^{T},(\mathbf {e} _{i_{2}}^{2})^{T},\ldots ,(\mathbf {e} _{i_{d}}^{d})^{T}\right)\cdot {\widehat {\mathcal {B}}}\\={}&\left((\mathbf {e} _{i_{1}}^{1})^{T},(\mathbf {e} _{i_{2}}^{2})^{T},\ldots ,(\mathbf {e} _{i_{d}}^{d})^{T}\right)\cdot ({\widehat {M}}_{1},{\widehat {M}}_{2},\ldots ,{\widehat {M}}_{d})\cdot \sum _{j_{1}=1}^{n_{1}}\sum _{j_{2}=1}^{n_{2}}\cdots \sum _{j_{d}=1}^{n_{d}}a_{j_{1},j_{2},\ldots ,j_{d}}\mathbf {e} _{j_{1}}^{1}\otimes \mathbf {e} _{j_{2}}^{2}\otimes \cdots \otimes \mathbf {e} _{j_{d}}^{d}\\={}&\sum _{j_{1}=1}^{n_{1}}\sum _{j_{2}=1}^{n_{2}}\cdots \sum _{j_{d}=1}^{n_{d}}a_{j_{1},j_{2},\ldots ,j_{d}}((\mathbf {e} _{i_{1}}^{1})^{T}{\widehat {M}}_{1}\mathbf {e} _{j_{1}}^{1})\otimes ((\mathbf {e} _{i_{2}}^{2})^{T}{\widehat {M}}_{2}\mathbf {e} _{j_{2}}^{2})\otimes \cdots \otimes ((\mathbf {e} _{i_{d}}^{d})^{T}{\widehat {M}}_{d}\mathbf {e} _{j_{d}}^{d})\\={}&\sum _{j_{1}=1}^{n_{1}}\sum _{j_{2}=1}^{n_{2}}\cdots \sum _{j_{d}=1}^{n_{d}}a_{j_{1},j_{2},\ldots ,j_{d}}m_{i_{1},j_{1}}^{(1)}\cdot m_{i_{2},j_{2}}^{(2)}\cdots m_{i_{d},j_{d}}^{(d)},\end{aligned}}}
where the m i , j ( k ) {\displaystyle m_{i,j}^{(k)}} are the elements of M ^ k {\displaystyle {\widehat {M}}_{k}} as defined above.
Properties Let A ∈ V 1 ⊗ V 2 ⊗ ⋯ ⊗ V d {\displaystyle {\mathcal {A}}\in V_{1}\otimes V_{2}\otimes \cdots \otimes V_{d}} be an order-d tensor over the tensor product of F {\displaystyle F} -vector spaces.
Since a multilinear multiplication is the tensor product of linear maps, we have the following multilinearity property (in the construction of the map): [ 1] [ 2]
A 1 ⊗ ⋯ ⊗ A k − 1 ⊗ ( α A k + β B ) ⊗ A k + 1 ⊗ ⋯ ⊗ A d = α A 1 ⊗ ⋯ ⊗ A d + β A 1 ⊗ ⋯ ⊗ A k − 1 ⊗ B ⊗ A k + 1 ⊗ ⋯ ⊗ A d {\displaystyle A_{1}\otimes \cdots \otimes A_{k-1}\otimes (\alpha A_{k}+\beta B)\otimes A_{k+1}\otimes \cdots \otimes A_{d}=\alpha A_{1}\otimes \cdots \otimes A_{d}+\beta A_{1}\otimes \cdots \otimes A_{k-1}\otimes B\otimes A_{k+1}\otimes \cdots \otimes A_{d}}
Multilinear multiplication is a linear map : [ 1] [ 2] ( M 1 , M 2 , … , M d ) ⋅ ( α A + β B ) = α ( M 1 , M 2 , … , M d ) ⋅ A + β ( M 1 , M 2 , … , M d ) ⋅ B {\displaystyle (M_{1},M_{2},\ldots ,M_{d})\cdot (\alpha {\mathcal {A}}+\beta {\mathcal {B}})=\alpha \;(M_{1},M_{2},\ldots ,M_{d})\cdot {\mathcal {A}}+\beta \;(M_{1},M_{2},\ldots ,M_{d})\cdot {\mathcal {B}}}
It follows from the definition that the composition of two multilinear multiplications is also a multilinear multiplication: [ 1] [ 2]
( M 1 , M 2 , … , M d ) ⋅ ( ( K 1 , K 2 , … , K d ) ⋅ A ) = ( M 1 ∘ K 1 , M 2 ∘ K 2 , … , M d ∘ K d ) ⋅ A , {\displaystyle (M_{1},M_{2},\ldots ,M_{d})\cdot \left((K_{1},K_{2},\ldots ,K_{d})\cdot {\mathcal {A}}\right)=(M_{1}\circ K_{1},M_{2}\circ K_{2},\ldots ,M_{d}\circ K_{d})\cdot {\mathcal {A}},}
where M k : U k → W k {\displaystyle M_{k}:U_{k}\to W_{k}} and K k : V k → U k {\displaystyle K_{k}:V_{k}\to U_{k}} are linear maps.
Observe specifically that multilinear multiplications in different factors commute,
M k ⋅ k ( M ℓ ⋅ ℓ A ) = M ℓ ⋅ ℓ ( M k ⋅ k A ) = M k ⋅ k M ℓ ⋅ ℓ A , {\displaystyle M_{k}\cdot _{k}\left(M_{\ell }\cdot _{\ell }{\mathcal {A}}\right)=M_{\ell }\cdot _{\ell }\left(M_{k}\cdot _{k}{\mathcal {A}}\right)=M_{k}\cdot _{k}M_{\ell }\cdot _{\ell }{\mathcal {A}},}
if k ≠ ℓ . {\displaystyle k\neq \ell .}
Computation The factor-k multilinear multiplication M k ⋅ k A {\displaystyle M_{k}\cdot _{k}{\mathcal {A}}} can be computed in coordinates as follows. Observe first that
M k ⋅ k A = M k ⋅ k ∑ j 1 = 1 n 1 ∑ j 2 = 1 n 2 ⋯ ∑ j d = 1 n d a j 1 , j 2 , … , j d e j 1 1 ⊗ e j 2 2 ⊗ ⋯ ⊗ e j d d = ∑ j 1 = 1 n 1 ⋯ ∑ j k − 1 = 1 n k − 1 ∑ j k + 1 = 1 n k + 1 ⋯ ∑ j d = 1 n d e j 1 1 ⊗ ⋯ ⊗ e j k − 1 k − 1 ⊗ M k ( ∑ j k = 1 n k a j 1 , j 2 , … , j d e j k k ) ⊗ e j k + 1 k + 1 ⊗ ⋯ ⊗ e j d d . {\displaystyle {\begin{aligned}M_{k}\cdot _{k}{\mathcal {A}}&=M_{k}\cdot _{k}\sum _{j_{1}=1}^{n_{1}}\sum _{j_{2}=1}^{n_{2}}\cdots \sum _{j_{d}=1}^{n_{d}}a_{j_{1},j_{2},\ldots ,j_{d}}\mathbf {e} _{j_{1}}^{1}\otimes \mathbf {e} _{j_{2}}^{2}\otimes \cdots \otimes \mathbf {e} _{j_{d}}^{d}\\&=\sum _{j_{1}=1}^{n_{1}}\cdots \sum _{j_{k-1}=1}^{n_{k-1}}\sum _{j_{k+1}=1}^{n_{k+1}}\cdots \sum _{j_{d}=1}^{n_{d}}\mathbf {e} _{j_{1}}^{1}\otimes \cdots \otimes \mathbf {e} _{j_{k-1}}^{k-1}\otimes M_{k}\left(\sum _{j_{k}=1}^{n_{k}}a_{j_{1},j_{2},\ldots ,j_{d}}\mathbf {e} _{j_{k}}^{k}\right)\otimes \mathbf {e} _{j_{k+1}}^{k+1}\otimes \cdots \otimes \mathbf {e} _{j_{d}}^{d}.\end{aligned}}}
Next, since
F n 1 ⊗ F n 2 ⊗ ⋯ ⊗ F n d ≃ F n k ⊗ ( F n 1 ⊗ ⋯ ⊗ F n k − 1 ⊗ F n k + 1 ⊗ ⋯ ⊗ F n d ) ≃ F n k ⊗ F n 1 ⋯ n k − 1 n k + 1 ⋯ n d , {\displaystyle F^{n_{1}}\otimes F^{n_{2}}\otimes \cdots \otimes F^{n_{d}}\simeq F^{n_{k}}\otimes (F^{n_{1}}\otimes \cdots \otimes F^{n_{k-1}}\otimes F^{n_{k+1}}\otimes \cdots \otimes F^{n_{d}})\simeq F^{n_{k}}\otimes F^{n_{1}\cdots n_{k-1}n_{k+1}\cdots n_{d}},}
there is a bijective map, called the factor-k standard flattening , [ 1] denoted by ( ⋅ ) ( k ) {\displaystyle (\cdot )_{(k)}} , that identifies M k ⋅ k A {\displaystyle M_{k}\cdot _{k}{\mathcal {A}}} with an element from the latter space, namely
( M k ⋅ k A ) ( k ) := ∑ j 1 = 1 n 1 ⋯ ∑ j k − 1 = 1 n k − 1 ∑ j k + 1 = 1 n k + 1 ⋯ ∑ j d = 1 n d M k ( ∑ j k = 1 n k a j 1 , j 2 , … , j d e j k k ) ⊗ e μ k ( j 1 , … , j k − 1 , j k + 1 , … , j d ) := M k A ( k ) , {\displaystyle \left(M_{k}\cdot _{k}{\mathcal {A}}\right)_{(k)}:=\sum _{j_{1}=1}^{n_{1}}\cdots \sum _{j_{k-1}=1}^{n_{k-1}}\sum _{j_{k+1}=1}^{n_{k+1}}\cdots \sum _{j_{d}=1}^{n_{d}}M_{k}\left(\sum _{j_{k}=1}^{n_{k}}a_{j_{1},j_{2},\ldots ,j_{d}}\mathbf {e} _{j_{k}}^{k}\right)\otimes \mathbf {e} _{\mu _{k}(j_{1},\ldots ,j_{k-1},j_{k+1},\ldots ,j_{d})}:=M_{k}{\mathcal {A}}_{(k)},}
where e j {\displaystyle \mathbf {e} _{j}} is the j th standard basis vector of F N k {\displaystyle F^{N_{k}}} , N k = n 1 ⋯ n k − 1 n k + 1 ⋯ n d {\displaystyle N_{k}=n_{1}\cdots n_{k-1}n_{k+1}\cdots n_{d}} , and A ( k ) ∈ F n k ⊗ F N k ≃ F n k × N k {\displaystyle {\mathcal {A}}_{(k)}\in F^{n_{k}}\otimes F^{N_{k}}\simeq F^{n_{k}\times N_{k}}} is the factor-k flattening matrix of A {\displaystyle {\mathcal {A}}} whose columns are the factor-k vectors [ a j 1 , … , j k − 1 , i , j k + 1 , … , j d ] i = 1 n k {\displaystyle [a_{j_{1},\ldots ,j_{k-1},i,j_{k+1},\ldots ,j_{d}}]_{i=1}^{n_{k}}} in some order, determined by the particular choice of the bijective map
μ k : [ 1 , n 1 ] × ⋯ × [ 1 , n k − 1 ] × [ 1 , n k + 1 ] × ⋯ × [ 1 , n d ] → [ 1 , N k ] . {\displaystyle \mu _{k}:[1,n_{1}]\times \cdots \times [1,n_{k-1}]\times [1,n_{k+1}]\times \cdots \times [1,n_{d}]\to [1,N_{k}].}
In other words, the multilinear multiplication ( M 1 , M 2 , … , M d ) ⋅ A {\displaystyle (M_{1},M_{2},\ldots ,M_{d})\cdot {\mathcal {A}}} can be computed as a sequence of d factor-k multilinear multiplications, which themselves can be implemented efficiently as classic matrix multiplications.
This page is based on this
Wikipedia article Text is available under the
CC BY-SA 4.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.