Multilinear multiplication

Last updated

In multilinear algebra, applying a map that is the tensor product of linear maps to a tensor is called a multilinear multiplication.

Contents

Abstract definition

Let be a field of characteristic zero, such as or . Let be a finite-dimensional vector space over , and let be an order-d simple tensor, i.e., there exist some vectors such that . If we are given a collection of linear maps , then the multilinear multiplication of with is defined [1] as the action on of the tensor product of these linear maps, [2] namely

Since the tensor product of linear maps is itself a linear map, [2] and because every tensor admits a tensor rank decomposition, [1] the above expression extends linearly to all tensors. That is, for a general tensor , the multilinear multiplication is

where with is one of 's tensor rank decompositions. The validity of the above expression is not limited to a tensor rank decomposition; in fact, it is valid for any expression of as a linear combination of pure tensors, which follows from the universal property of the tensor product.

It is standard to use the following shorthand notations in the literature for multilinear multiplications:

and

where is the identity operator.

Definition in coordinates

In computational multilinear algebra it is conventional to work in coordinates. Assume that an inner product is fixed on and let denote the dual vector space of . Let be a basis for , let be the dual basis, and let be a basis for . The linear map is then represented by the matrix . Likewise, with respect to the standard tensor product basis , the abstract tensor

is represented by the multidimensional array . Observe that

where is the jth standard basis vector of and the tensor product of vectors is the affine Segre map . It follows from the above choices of bases that the multilinear multiplication becomes

The resulting tensor lives in .

Element-wise definition

From the above expression, an element-wise definition of the multilinear multiplication is obtained. Indeed, since is a multidimensional array, it may be expressed as

where are the coefficients. Then it follows from the above formulae that

where is the Kronecker delta. Hence, if , then

where the are the elements of as defined above.

Properties

Let be an order-d tensor over the tensor product of -vector spaces.

Since a multilinear multiplication is the tensor product of linear maps, we have the following multilinearity property (in the construction of the map): [1] [2]

Multilinear multiplication is a linear map: [1] [2]

It follows from the definition that the composition of two multilinear multiplications is also a multilinear multiplication: [1] [2]

where and are linear maps.

Observe specifically that multilinear multiplications in different factors commute,

if

Computation

The factor-k multilinear multiplication can be computed in coordinates as follows. Observe first that

Next, since

there is a bijective map, called the factor-k standard flattening , [1] denoted by , that identifies with an element from the latter space, namely

where is the jth standard basis vector of , , and is the factor-k flattening matrix of whose columns are the factor-k vectors in some order, determined by the particular choice of the bijective map

In other words, the multilinear multiplication can be computed as a sequence of d factor-k multilinear multiplications, which themselves can be implemented efficiently as classic matrix multiplications.

Applications

The higher-order singular value decomposition (HOSVD) factorizes a tensor given in coordinates as the multilinear multiplication , where are orthogonal matrices and .

Further reading

  1. 1 2 3 4 5 6 M., Landsberg, J. (2012). Tensors : geometry and applications. Providence, R.I.: American Mathematical Society. ISBN   9780821869079. OCLC   733546583.
  2. 1 2 3 4 5 Multilinear Algebra | Werner Greub | Springer. Universitext. Springer. 1978. ISBN   9780387902845.

Related Research Articles

Continuum mechanics is a branch of mechanics that deals with the mechanical behavior of materials modeled as a continuous mass rather than as discrete particles. The French mathematician Augustin-Louis Cauchy was the first to formulate such models in the 19th century.

In mathematics, a product is the result of multiplying, or an expression that identifies factors to be multiplied. Thus, for instance, 30 is the product of 6 and 5, and is the product of and .

Tensor Algebraic object with geometric applications

In mathematics, a tensor is an algebraic object that describes a (multilinear) relationship between sets of algebraic objects related to a vector space. Objects that tensors may map between include vectors and scalars, and, recursively, even other tensors. Tensors can take several different forms – for example: scalars and vectors, dual vectors, multi-linear maps between vector spaces, and even some operations such as the dot product. Tensors are defined independent of any basis, although they are often referred to by their components in a basis related to a particular coordinate system.

In mathematics, the tensor productVW of two vector spaces V and W is itself a vector space, endowed with the operation of bilinear composition, denoted by , from ordered pairs in the Cartesian product V × W to VW in a way that generalizes the outer product.

In linear algebra, a multilinear map is a function of several variables that is linear separately in each variable. More precisely, a multilinear map is a function

Exterior algebra Algebraic construction used in multilinear algebra and geometry

In mathematics, the exterior product or wedge product of vectors is an algebraic construction used in geometry to study areas, volumes, and their higher-dimensional analogues. The exterior product of two vectors u and v, denoted by uv, is called a bivector and lives in a space called the exterior square, a vector space that is distinct from the original space of vectors. The magnitude of uv can be interpreted as the area of the parallelogram with sides u and v, which in three dimensions can also be computed using the cross product of the two vectors. Like the cross product, the exterior product is anticommutative, meaning that uv = −(vu) for all vectors u and v, but, unlike the cross product, the exterior product is associative. One way to visualize a bivector is as a family of parallelograms all lying in the same plane, having the same area, and with the same orientation—a choice of clockwise or counterclockwise.

In mathematics, the modern component-free approach to the theory of a tensor views a tensor as an abstract object, expressing some definite type of multilinear concept. Their well-known properties can be derived from their definitions, as linear maps or more generally; and the rules for manipulations of tensors arise as an extension of linear algebra to multilinear algebra.

In mathematics and physics, a tensor field assigns a tensor to each point of a mathematical space. Tensor fields are used in differential geometry, algebraic geometry, general relativity, in the analysis of stress and strain in materials, and in numerous applications in the physical sciences. As a tensor is a generalization of a scalar and a vector, a tensor field is a generalization of a scalar field or vector field that assigns, respectively, a scalar or vector to each point of space.

In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix. It is a generalization of the outer product from vectors to matrices, and gives the matrix of the tensor product with respect to a standard choice of basis. The Kronecker product should not be confused with the usual matrix multiplication, which is an entirely different operation.

Automatic differentiation

In mathematics and computer algebra, automatic differentiation (AD), also called algorithmic differentiation or computational differentiation, is a set of techniques to numerically evaluate the derivative of a function specified by a computer program. AD exploits the fact that every computer program, no matter how complicated, executes a sequence of elementary arithmetic operations and elementary functions. By applying the chain rule repeatedly to these operations, derivatives of arbitrary order can be computed automatically, accurately to working precision, and using at most a small constant factor more arithmetic operations than the original program.

In abstract algebra and multilinear algebra, a multilinear form on a vector space over a field is a map

In mathematics, an operad is concerned with prototypical algebras that model properties such as commutativity or anticommutativity as well as various amounts of associativity. Operads generalize the various associativity properties already observed in algebras and coalgebras such as Lie algebras or Poisson algebras by modeling computational trees within the algebra. Algebras are to operads as group representations are to groups. An operad can be seen as a set of operations, each one having a fixed finite number of inputs (arguments) and one output, which can be composed one with others. They form a category-theoretic analog of universal algebra.

In mathematics, Hochschild homology is a homology theory for associative algebras over rings. There is also a theory for Hochschild homology of certain functors. Hochschild cohomology was introduced by Gerhard Hochschild (1945) for algebras over a field, and extended to algebras over more general rings by Henri Cartan and Samuel Eilenberg (1956).

In mathematics, specifically multilinear algebra, a dyadic or dyadic tensor is a second order tensor, written in a notation that fits in with vector algebra.

In multilinear algebra, the tensor rank decomposition or canonical polyadic decomposition (CPD) may be regarded as a generalization of the matrix singular value decomposition (SVD) to tensors, which has found application in statistics, signal processing, psychometrics, linguistics and chemometrics. It was introduced by Hitchcock in 1927 and later rediscovered several times, notably in psychometrics. For this reason, the tensor rank decomposition is sometimes historically referred to as PARAFAC or CANDECOMP.

In multilinear algebra, a reshaping of tensors is any bijection between the set of indices of an order- tensor and the set of indices of an order- tensor, where . The use of indices presupposes tensors in coordinate representation with respect to a basis. The coordinate representation of a tensor can be regarded as a multi-dimensional array, and a bijection from one set of indices to another therefore amounts to a rearrangement of the array elements into an array of a different shape. Such a rearrangement constitutes a particular kind of linear map between the vector space of order- tensors and the vector space of order- tensors.

In multilinear algebra, the higher-order singular value decomposition (HOSVD) of a tensor is a specific orthogonal Tucker decomposition. It may be regarded as one generalization of the matrix singular value decomposition. The HOSVD has applications in computer graphics, machine learning, scientific computing, and signal processing. Some key ingredients of the HOSVD can be traced as far back as F. L. Hitchcock in 1928, but it was L. R. Tucker who developed for third-order tensors the general Tucker decomposition in the 1960s, including the HOSVD. The HOSVD as decomposition in its own right was further advocated by L. De Lathauwer et al. in 2000. Robust and L1-norm-based variants of HOSVD have also been proposed.

In mathematics, the Kodaira–Spencer map, introduced by Kunihiko Kodaira and Donald C. Spencer, is a map associated to a deformation of a scheme or complex manifold X, taking a tangent space of a point of the deformation space to the first cohomology group of the sheaf of vector fields on X.

Curvilinear coordinates can be formulated in tensor calculus, with important applications in physics and engineering, particularly for describing transportation of physical quantities and deformation of matter in fluid mechanics and continuum mechanics.

In machine learning, the kernel embedding of distributions comprises a class of nonparametric methods in which a probability distribution is represented as an element of a reproducing kernel Hilbert space (RKHS). A generalization of the individual data-point feature mapping done in classical kernel methods, the embedding of distributions into infinite-dimensional feature spaces can preserve all of the statistical features of arbitrary distributions, while allowing one to compare and manipulate distributions using Hilbert space operations such as inner products, distances, projections, linear transformations, and spectral analysis. This learning framework is very general and can be applied to distributions over any space on which a sensible kernel function may be defined. For example, various kernels have been proposed for learning from data which are: vectors in , discrete classes/categories, strings, graphs/networks, images, time series, manifolds, dynamical systems, and other structured objects. The theory behind kernel embeddings of distributions has been primarily developed by Alex Smola, Le Song , Arthur Gretton, and Bernhard Schölkopf. A review of recent works on kernel embedding of distributions can be found in.