Multipolarity of gamma radiation

Last updated
Electric dipole radiation. The dipole lies in the plane of the drawing, points vertically upward and oscillates with about 1 Hz. The colour indicates the strength of the field travelling outward. The magnetic field lines are perpendicular to the plane of the drawing. DipoleRadiation.gif
Electric dipole radiation. The dipole lies in the plane of the drawing, points vertically upward and oscillates with about 1 Hz. The colour indicates the strength of the field travelling outward. The magnetic field lines are perpendicular to the plane of the drawing.

Transitions between excited states (or excited states and the ground state) of a nuclide lead to the emission of gamma quanta. These can be classified by their multipolarity. [1] There are two kinds: electric and magnetic multipole radiation. Each of these, being electromagnetic radiation, consists of an electric and a magnetic field.

Contents

Multipole radiation

Electric dipole, quadrupole, octupole… radiation (generally: 2pole radiation) is also designated as E1, E2, E3,… radiation (generally: E radiation). [note 1]

Similarly, magnetic dipole, quadrupole, octupole… radiation (generally: 2pole radiation) is designated as M1, M2, M3,… radiation (generally: M radiation).

There is no monopole radiation (). [1]

In quantum mechanics, angular momentum is quantized. The various multipole fields have particular values of angular momentum: E radiation carries an angular momentum in units of ; likewise, M radiation carries an angular momentum in units of . The conservation of angular momentum leads to selection rules, i.e., rules defining which multipoles may or may not be emitted in particular transitions.

To make a simple classical comparison, consider the figure of the oscillating dipole. It produces electric field lines travelling outwards, intertwined with magnetic field lines, according to Maxwell's equations. This system of field lines then corresponds to that of E1 radiation. Similar considerations hold for oscillating electric or magnetic multipoles of higher order.

Conversely, it is plausible that the multipolarity of radiation can be determined from the angular distribution of the emitted radiation.

Quantum numbers and selection rules

Simplified decay scheme of 60Co, with angular momenta and parities shown 60Co Decay.jpg
Simplified decay scheme of 60Co, with angular momenta and parities shown

A state of a nuclide is described by its energy above the ground state, by its angular momentum J (in units of ), and by its parity, i.e., its behaviour under reflection (positive+ or negative). Since the spin of nucleons is ½ (in units of ), and since orbital angular momentum has integer values, J may be an integer or a half integer number.

Electric and magnetic multipole radiations of the same order (i.e., dipole, or quadrupole...) carry the same angular momentum (in units of ), but differ in parity. The following relations hold for : [1]

Electric multipole radiation: Parity :
Here, the electric field has parity , and the magnetic field .
Magnetic multipole radiation: Parity :
Here, the electric field has parity , and the magnetic field .

The designation "electric multipole radiation" seems appropriate since the major part of that radiation is produced by the charge density in the source; [1] conversely, the "magnetic multipole radiation" is mainly due to the current density of the source. [1]

In electric multipole radiation, the electric field has a radial component; in magnetic multipole radiation, the magnetic field has a radial component. [1]

An example: in the simplified decay scheme of 60Co above, the angular momenta and the parities of the various states are shown (A plus sign means even parity, a minus sign means odd parity). Consider the 1.33 MeV transition to the ground state. Clearly, this must carry away an angular momentum of 2, without change of parity. It is therefore an E2 transition. The case of the 1.17 MeV transition is a bit more complex: going from J = 4 to J = 2, all values of angular momentum from 2 to 6 could be emitted. But in practice, the smallest values are most likely, so it is also a quadrupole transition, and it is E2 since there is no parity change.

See also

Notes

  1. The symbol is used here to distinguish the letter "el" clearly from the numeral "one".

Related Research Articles

<span class="mw-page-title-main">Dipole</span> Electromagnetic phenomenon

In physics, a dipole is an electromagnetic phenomenon which occurs in two ways:

<span class="mw-page-title-main">Zeeman effect</span> Spectral line splitting in magnetic field

The Zeeman effect is the effect of splitting of a spectral line into several components in the presence of a static magnetic field. It is named after the Dutch physicist Pieter Zeeman, who discovered it in 1896 and received a Nobel prize for this discovery. It is analogous to the Stark effect, the splitting of a spectral line into several components in the presence of an electric field. Also similar to the Stark effect, transitions between different components have, in general, different intensities, with some being entirely forbidden, as governed by the selection rules.

In physics, a moment is a mathematical expression involving the product of a distance and physical quantity. Moments are usually defined with respect to a fixed reference point and refer to physical quantities located some distance from the reference point. In this way, the moment accounts for the quantity's location or arrangement. For example, the moment of force, often called torque, is the product of a force on an object and the distance from the reference point to the object. In principle, any physical quantity can be multiplied by a distance to produce a moment. Commonly used quantities include forces, masses, and electric charge distributions.

<span class="mw-page-title-main">Hyperfine structure</span> Small shifts and splittings in the energy levels of atoms, molecules and ions

In atomic physics, hyperfine structure is defined by small shifts in otherwise degenerate energy levels and the resulting splittings in those energy levels of atoms, molecules, and ions, due to electromagnetic multipole interaction between the nucleus and electron clouds.

<span class="mw-page-title-main">Azimuthal quantum number</span> Quantum number denoting orbital angular momentum

In quantum mechanics, the azimuthal quantum number is a quantum number for an atomic orbital that determines its orbital angular momentum and describes the shape of the orbital. The azimuthal quantum number is the second of a set of quantum numbers that describe the unique quantum state of an electron. It is also known as the orbital angular momentum quantum number, orbital quantum number, subsidiary quantum number, or second quantum number, and is symbolized as .

<span class="mw-page-title-main">Magnetic moment</span> Magnetic strength and orientation of an object that produces a magnetic field

In electromagnetism, the magnetic moment is the magnetic strength and orientation of a magnet or other object that produces a magnetic field. Examples of objects that have magnetic moments include loops of electric current, permanent magnets, elementary particles, various molecules, and many astronomical objects.

In atomic physics, a magnetic quantum number is a quantum number used to distinguish quantum states of an electron or other particle according to its angular momentum along a given axis in space. The orbital magnetic quantum number distinguishes the orbitals available within a given subshell of an atom. It specifies the component of the orbital angular momentum that lies along a given axis, conventionally called the z-axis, so it describes the orientation of the orbital in space. The spin magnetic quantum numberms specifies the z-axis component of the spin angular momentum for a particle having spin quantum number s. For an electron, s is 12, and ms is either +12 or −12, often called "spin-up" and "spin-down", or α and β. The term magnetic in the name refers to the magnetic dipole moment associated with each type of angular momentum, so states having different magnetic quantum numbers shift in energy in a magnetic field according to the Zeeman effect.

In physics, the spin quantum number is a quantum number that describes the intrinsic angular momentum of an electron or other particle. It has the same value for all particles of the same type, such as s = 1/2 for all electrons. It is an integer for all bosons, such as photons, and a half-odd-integer for all fermions, such as electrons and protons. The component of the spin along a specified axis is given by the spin magnetic quantum number, conventionally written ms. The value of ms is the component of spin angular momentum, in units of the reduced Planck constant ħ, parallel to a given direction. It can take values ranging from +s to −s in integer increments. For an electron, ms can be either ++1/2 or +1/2.

In physics and chemistry, a selection rule, or transition rule, formally constrains the possible transitions of a system from one quantum state to another. Selection rules have been derived for electromagnetic transitions in molecules, in atoms, in atomic nuclei, and so on. The selection rules may differ according to the technique used to observe the transition. The selection rule also plays a role in chemical reactions, where some are formally spin-forbidden reactions, that is, reactions where the spin state changes at least once from reactants to products.

A multipole expansion is a mathematical series representing a function that depends on angles—usually the two angles used in the spherical coordinate system for three-dimensional Euclidean space, . Similarly to Taylor series, multipole expansions are useful because oftentimes only the first few terms are needed to provide a good approximation of the original function. The function being expanded may be real- or complex-valued and is defined either on , or less often on for some other .

A quadrupole or quadrapole is one of a sequence of configurations of things like electric charge or current, or gravitational mass that can exist in ideal form, but it is usually just part of a multipole expansion of a more complex structure reflecting various orders of complexity.

In atomic physics, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the magnetic moment of an electron resulting from its intrinsic properties of spin and electric charge. The value of the electron magnetic moment is −9.2847647043(28)×10−24 J⋅T−1. In units of the Bohr magneton (μB), it is −1.00115965218059(13) μB, a value that was measured with a relative accuracy of 1.3×10−13.

The nuclear magnetic moment is the magnetic moment of an atomic nucleus and arises from the spin of the protons and neutrons. It is mainly a magnetic dipole moment; the quadrupole moment does cause some small shifts in the hyperfine structure as well. All nuclei that have nonzero spin also possess a nonzero magnetic moment and vice versa, although the connection between the two quantities is not straightforward or easy to calculate.

In quantum physics, the spin–orbit interaction is a relativistic interaction of a particle's spin with its motion inside a potential. A key example of this phenomenon is the spin–orbit interaction leading to shifts in an electron's atomic energy levels, due to electromagnetic interaction between the electron's magnetic dipole, its orbital motion, and the electrostatic field of the positively charged nucleus. This phenomenon is detectable as a splitting of spectral lines, which can be thought of as a Zeeman effect product of two relativistic effects: the apparent magnetic field seen from the electron perspective and the magnetic moment of the electron associated with its intrinsic spin. A similar effect, due to the relationship between angular momentum and the strong nuclear force, occurs for protons and neutrons moving inside the nucleus, leading to a shift in their energy levels in the nucleus shell model. In the field of spintronics, spin–orbit effects for electrons in semiconductors and other materials are explored for technological applications. The spin–orbit interaction is at the origin of magnetocrystalline anisotropy and the spin Hall effect.

In spectroscopy, a forbidden mechanism is a spectral line associated with absorption or emission of photons by atomic nuclei, atoms, or molecules which undergo a transition that is not allowed by a particular selection rule but is allowed if the approximation associated with that rule is not made. For example, in a situation where, according to usual approximations, the process cannot happen, but at a higher level of approximation the process is allowed but at a low rate.

The interaction of an electromagnetic wave with an electron bound in an atom or molecule can be described by time-dependent perturbation theory. Magnetic dipole transitions describe the dominant effect of the coupling to the magnetic part of the electromagnetic wave. They can be divided into two groups by the frequency at which they are observed: optical magnetic dipole transitions can occur at frequencies in the infrared, optical or ultraviolet between sublevels of two different electronic levels, while magnetic Resonance transitions can occur at microwave or radio frequencies between angular momentum sublevels within a single electronic level. The latter are called Electron Paramagnetic Resonance (EPR) transitions if they are associated with the electronic angular momentum of the atom or molecule and Nuclear Magnetic Resonance (NMR) transitions if they are associated with the nuclear angular momentum.

Multipole radiation is a theoretical framework for the description of electromagnetic or gravitational radiation from time-dependent distributions of distant sources. These tools are applied to physical phenomena which occur at a variety of length scales - from gravitational waves due to galaxy collisions to gamma radiation resulting from nuclear decay. Multipole radiation is analyzed using similar multipole expansion techniques that describe fields from static sources, however there are important differences in the details of the analysis because multipole radiation fields behave quite differently from static fields. This article is primarily concerned with electromagnetic multipole radiation, although the treatment of gravitational waves is similar.

In pure and applied mathematics, quantum mechanics and computer graphics, a tensor operator generalizes the notion of operators which are scalars and vectors. A special class of these are spherical tensor operators which apply the notion of the spherical basis and spherical harmonics. The spherical basis closely relates to the description of angular momentum in quantum mechanics and spherical harmonic functions. The coordinate-free generalization of a tensor operator is known as a representation operator.

Magnetic resonance is a quantum mechanical resonant effect that can appear when a magnetic dipole is exposed to a static magnetic field and perturbed with another, oscillating electromagnetic field. Due to the static field, the dipole can assume a number of discrete energy eigenstates, depending on the value of its angular momentum quantum number. The oscillating field can then make the dipole transit between its energy states with a certain probability and at a certain rate. The overall transition probability will depend on the field's frequency and the rate will depend on its amplitude. When the frequency of that field leads to the maximum possible transition probability between two states, a magnetic resonance has been achieved. In that case, the energy of the photons composing the oscillating field matches the energy difference between said states. If the dipole is tickled with a field oscillating far from resonance, it is unlikely to transition. That is analogous to other resonant effects, such as with the forced harmonic oscillator. The periodic transition between the different states is called Rabi cycle and the rate at which that happens is called Rabi frequency. The Rabi frequency should not be confused with the field's own frequency. Since many atomic nuclei species can behave as a magnetic dipole, this resonance technique is the basis of nuclear magnetic resonance, including nuclear magnetic resonance imaging and nuclear magnetic resonance spectroscopy.

<span class="mw-page-title-main">Perturbed angular correlation</span>

The perturbed γ-γ angular correlation, PAC for short or PAC-Spectroscopy, is a method of nuclear solid-state physics with which magnetic and electric fields in crystal structures can be measured. In doing so, electrical field gradients and the Larmor frequency in magnetic fields as well as dynamic effects are determined. With this very sensitive method, which requires only about 10-1000 billion atoms of a radioactive isotope per measurement, material properties in the local structure, phase transitions, magnetism and diffusion can be investigated. The PAC method is related to nuclear magnetic resonance and the Mössbauer effect, but shows no signal attenuation at very high temperatures. Today only the time-differential perturbed angular correlation (TDPAC) is used.

References

  1. 1 2 3 4 5 6 J.M.Blatt and V.F. Weisskopf: Theoretical Nuclear Physics, Springer, New York (1979)