Multipole radiation is a theoretical framework for the description of electromagnetic or gravitational radiation from time-dependent distributions of distant sources. These tools are applied to physical phenomena which occur at a variety of length scales - from gravitational waves due to galaxy collisions to gamma radiation resulting from nuclear decay. [1] [2] [3] Multipole radiation is analyzed using similar multipole expansion techniques that describe fields from static sources, however there are important differences in the details of the analysis because multipole radiation fields behave quite differently from static fields. This article is primarily concerned with electromagnetic multipole radiation, although the treatment of gravitational waves is similar.
Electromagnetic radiation depends on structural details of the source system of electric charge and electric current. Direct analysis can be intractable if the structure is unknown or complicated. Multipole analysis offers a way to separate the radiation into moments of increasing complexity. Since the electromagnetic field depends more heavily on lower-order moments than on higher-order moments, the electromagnetic field can be approximated without knowing the structure in detail.
Since Maxwell's equations are linear, the electric field and magnetic field depend linearly on source distributions. Linearity allows the fields from various multipole moments to be calculated independently and added together to give the total field of the system. This is the well-known principle of superposition.
Multipole moments are calculated with respect to a fixed expansion point which is taken to be the origin of a given coordinate system. Translating the origin changes the multipole moments of the system with the exception of the first non-vanishing moment. [4] [5] For example, the monopole moment of charge is simply the total charge in the system. Changing the origin will never change this moment. If the monopole moment is zero then the dipole moment of the system will be translation invariant. If both the monopole and dipole moments are zero then the quadrupole moment is translation invariant, and so forth. Because higher-order moments depend on the position of the origin, they cannot be regarded as invariant properties of the system.
The field from a multipole moment depends on both the distance from the origin and the angular orientation of the evaluation point with respect to the coordinate system. [4] In particular, the radial dependence of the electromagnetic field from a stationary-pole scales as . [2] That is, the electric field from the electric monopole moment scales as inverse distance squared. Likewise, the electric dipole moment creates a field that scales as inverse distance cubed, and so on. As distance increases, the contribution of high-order moments becomes much smaller than the contribution from low-order moments, so high-order moments can be ignored to simplify calculations.
The radial dependence of radiation waves is different from static fields because these waves carry energy away from the system. Since energy must be conserved, simple geometric analysis shows that the energy density of spherical radiation, radius , must scale as . As a spherical wave expands, the fixed energy of the wave must spread out over an expanding sphere of surface area . Accordingly, every time-dependent multipole moment must contribute radiant energy density that scales as , regardless of the order of the moment. Hence, high-order moments cannot be discarded as easily as in static case. Even so, the multipole coefficients of a system generally diminish with increasing order, usually as , so radiation fields can still be approximated by truncating high-order moments. [5]
Time-dependent source distributions can be expressed using Fourier analysis. This allows separate frequencies to be analyzed independently. Charge density is given by
and current density by [6]
For convenience, only a single angular frequency ω is considered from this point forward; thus
The superposition principle may be applied to generalize results for multiple frequencies. [5] Vector quantities appear in bold. The standard convention of taking the real part of complex quantities to represent physical quantities is used.
The intrinsic angular momentum of elementary particles (see Spin (physics)) may also affect electromagnetic radiation from some source materials. To account for these effects, the intrinsic magnetization of the system would have to be taken into account. For simplicity however, these effects will be deferred to the discussion of generalized multipole radiation.
The source distributions can be integrated to yield the time-dependent electric potential and magnetic potential φ and A respectively. Formulas are expressed in the Lorenz Gauge in SI units. [5] [6]
In these formulas c is the speed of light in vacuum, is the Dirac delta function, and is the Euclidean distance from the source point x′ to the evaluation point x. Integrating the time-dependent source distributions above yields
where k = ω / c. These formulas provide the basis for analyzing multipole radiation.
The near field is the region around a source where the electromagnetic field can be evaluated quasi-statically. If target distance from the multipole origin is much smaller than the radiation wavelength , then . As a result, the exponential can be approximated in this region as:
See Taylor expansion. By using this approximation, the remaining x′ dependence is the same as it is for a static system, the same analysis applies. [4] [5] Essentially, the potentials can be evaluated in the near field at a given instant by simply taking a snapshot of the system and treating it as though it were static - hence it is called quasi-static. [5] See near and far field and multipole expansion. In particular, the inverse distance is expanded using spherical harmonics which are integrated separately to obtain spherical multipole coefficients.
At large distances from a high frequency source, , the following approximations hold:
Since only the first-order term in is significant at large distances, the expansions combine to give
Each power of corresponds to a different multipole moment. The first few moments are evaluated directly below.
The zeroth order term, , applied to the scalar potential gives
where the total charge is the electric monopole moment oscillating at frequency ω. Conservation of charge requires q = 0 since
If the system is closed then the total charge cannot fluctuate which means the oscillation amplitude q must be zero. Hence, . The corresponding fields and radiant power must also be zero. [5]
Electric dipole radiation can be derived by applying the zeroth-order term to the vector potential. [5]
Integration by parts yields [7]
and the charge continuity equation shows
It follows that
Similar results can be obtained by applying the first-order term, to the scalar potential. The amplitude of the electric dipole moment of the system is , which allows the potentials to be expressed as
Once the time-dependent potentials are understood, the time-dependent electric field and magnetic field can be calculated in the usual way. Namely,
or, in a source-free region of space, the relationship between the magnetic field and the electric field can be used to obtain
where is the impedance of free space. The electric and magnetic fields that correspond to the potentials above are
which is consistent with spherical radiation waves. [5]
The power density, energy per unit area per unit time, is expressed by the Poynting vector . It follows that the time averaged power density per unit solid angle is given by
The dot product with extracts the emission magnitude and the factor of 1/2 comes from averaging over time. As explained above, the cancels the radial dependence of radiation energy density. Application to a pure electric dipole gives
where θ is measured with respect to . [5] Integration over a sphere yields the total power radiated:
The first-order term, , applied to the vector potential gives magnetic dipole radiation and electric quadrupole radiation. [5]
The integrand can be separated into symmetric and anti-symmetric parts in J and x′
The second term contains the effective magnetization due to the current and integration gives the magnetic dipole moment.
Notice that has a similar form to . That means the magnetic field from a magnetic dipole behaves similarly to the electric field from an electric dipole. Likewise, the electric field from a magnetic dipole behaves like the magnetic field from an electric dipole. Taking the transformations
on previous results yields magnetic dipole results. [5]
The average power radiated per unit solid angle by a magnetic dipole is
where θ is measured with respect to the magnetic dipole . The total power radiated is: [5]
The symmetric portion of the integrand from the previous section can be resolved by applying integration by parts and the charge continuity equation as was done for electric dipole radiation.
This corresponds to the traceless electric quadrupole moment tensor . Contracting the second index with the normal vector allows the vector potential to be expressed as [5]
The resulting magnetic and electric fields are: [5]
The average power radiated per unit solid angle by an electric quadrupole is
where θ is measured with respect to the magnetic dipole . The total power radiated is: [5]
As the multipole moment of a source distribution increases, the direct calculations employed so far become too cumbersome to continue. Analysis of higher moments requires more general theoretical machinery. Just as before, a single source frequency is considered. Hence the charge, current, and intrinsic magnetization densities are given by
respectively. The resulting electric and magnetic fields share the same time-dependence as the sources.
Using these definitions and the continuity equation allows Maxwell's equations to be written as
These equations can be combined by taking the curl of the last equations and applying the identity . This gives the vector forms of the non-homogeneous Helmholtz equation.
The homogeneous wave equations that describes electromagnetic radiation with frequency in a source-free region have the form.
The wave function can be expressed as a sum of vector spherical harmonics
Where are the normalized vector spherical harmonics and and are spherical Hankel functions. See spherical Bessel functions. The differential operator is the angular momentum operator with the property . The coefficients and correspond to expanding and contracting waves respectively. So for radiation. To determine the other coefficients, the Green's function for the wave equation is applied. If the source equation is
then the solution is:
The Green function can be expressed in vector spherical harmonics.
Note that is a differential operator that acts on the source function . Thus, the solution to the wave equation is:
Applying the above solution to the electric multipole wave equation
gives the solution for the magnetic field: [5]
The electric field is:
The formula can be simplified by applying the identities
to the integrand, which results in [5]
Green's theorem and integration by parts manipulates the formula into
The spherical bessel function can also be simplified by assuming that the radiation length scale is much larger than the source length scale, which is true for most antennas.
Retaining only the lowest order terms results in the simplified form for the electric multipole coefficients: [5]
is the same as the electric multipole moment in the static case if it were applied to the static charge distribution whereas corresponds to an induced electric multipole moment from the intrinsic magnetization of the source material.
Applying the above solution to the magnetic multipole wave equation
gives the solution for the electric field: [5]
The magnetic field is:
As before, the forumula simplifies to:
Retaining only the lowest order terms results in the simplified form for the magnetic multipole coefficients: [5]
is the magnetic multipole moment from the effective magnetization while corresponds to the intrinsic magnetization .
The electric and magnetic multipole fields combine to give the total fields: [5]
Note that the radial function can be simplified in the far field limit .
Thus the radial dependence of radiation is recovered.
In vector calculus, the curl is a vector operator that describes the infinitesimal circulation of a vector field in three-dimensional Euclidean space. The curl at a point in the field is represented by a vector whose length and direction denote the magnitude and axis of the maximum circulation. The curl of a field is formally defined as the circulation density at each point of the field.
In physics, a dipole is an electromagnetic phenomenon which occurs in two ways:
In quantum mechanics, the Hamiltonian of a system is an operator corresponding to the total energy of that system, including both kinetic energy and potential energy. Its spectrum, the system's energy spectrum or its set of energy eigenvalues, is the set of possible outcomes obtainable from a measurement of the system's total energy. Due to its close relation to the energy spectrum and time-evolution of a system, it is of fundamental importance in most formulations of quantum theory.
The moment of inertia, otherwise known as the mass moment of inertia, angular mass, second moment of mass, or most accurately, rotational inertia, of a rigid body is a quantity that determines the torque needed for a desired angular acceleration about a rotational axis, akin to how mass determines the force needed for a desired acceleration. It depends on the body's mass distribution and the axis chosen, with larger moments requiring more torque to change the body's rate of rotation.
The vorticity equation of fluid dynamics describes the evolution of the vorticity ω of a particle of a fluid as it moves with its flow; that is, the local rotation of the fluid. The governing equation is:
In continuum mechanics, the infinitesimal strain theory is a mathematical approach to the description of the deformation of a solid body in which the displacements of the material particles are assumed to be much smaller than any relevant dimension of the body; so that its geometry and the constitutive properties of the material at each point of space can be assumed to be unchanged by the deformation.
In fluid dynamics, Stokes' law is an empirical law for the frictional force – also called drag force – exerted on spherical objects with very small Reynolds numbers in a viscous fluid. It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations.
In atomic physics, hyperfine structure is defined by small shifts in otherwise degenerate energy levels and the resulting splittings in those energy levels of atoms, molecules, and ions, due to electromagnetic multipole interaction between the nucleus and electron clouds.
In electromagnetism, the magnetic moment is the magnetic strength and orientation of a magnet or other object that produces a magnetic field. Examples of objects that have magnetic moments include loops of electric current, permanent magnets, elementary particles, various molecules, and many astronomical objects.
A multipole expansion is a mathematical series representing a function that depends on angles—usually the two angles used in the spherical coordinate system for three-dimensional Euclidean space, . Similarly to Taylor series, multipole expansions are useful because oftentimes only the first few terms are needed to provide a good approximation of the original function. The function being expanded may be real- or complex-valued and is defined either on , or less often on for some other .
A quadrupole or quadrapole is one of a sequence of configurations of things like electric charge or current, or gravitational mass that can exist in ideal form, but it is usually just part of a multipole expansion of a more complex structure reflecting various orders of complexity.
In geometry and linear algebra, a Cartesian tensor uses an orthonormal basis to represent a tensor in a Euclidean space in the form of components. Converting a tensor's components from one such basis to another is done through an orthogonal transformation.
In quantum physics, the spin–orbit interaction is a relativistic interaction of a particle's spin with its motion inside a potential. A key example of this phenomenon is the spin–orbit interaction leading to shifts in an electron's atomic energy levels, due to electromagnetic interaction between the electron's magnetic dipole, its orbital motion, and the electrostatic field of the positively charged nucleus. This phenomenon is detectable as a splitting of spectral lines, which can be thought of as a Zeeman effect product of two relativistic effects: the apparent magnetic field seen from the electron perspective and the magnetic moment of the electron associated with its intrinsic spin. A similar effect, due to the relationship between angular momentum and the strong nuclear force, occurs for protons and neutrons moving inside the nucleus, leading to a shift in their energy levels in the nucleus shell model. In the field of spintronics, spin–orbit effects for electrons in semiconductors and other materials are explored for technological applications. The spin–orbit interaction is at the origin of magnetocrystalline anisotropy and the spin Hall effect.
The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or the magnetic field B, takes the form:
In mathematics, vector spherical harmonics (VSH) are an extension of the scalar spherical harmonics for use with vector fields. The components of the VSH are complex-valued functions expressed in the spherical coordinate basis vectors.
The derivatives of scalars, vectors, and second-order tensors with respect to second-order tensors are of considerable use in continuum mechanics. These derivatives are used in the theories of nonlinear elasticity and plasticity, particularly in the design of algorithms for numerical simulations.
An electric dipole transition is the dominant effect of an interaction of an electron in an atom with the electromagnetic field.
In continuum mechanics, a compatible deformation tensor field in a body is that unique tensor field that is obtained when the body is subjected to a continuous, single-valued, displacement field. Compatibility is the study of the conditions under which such a displacement field can be guaranteed. Compatibility conditions are particular cases of integrability conditions and were first derived for linear elasticity by Barré de Saint-Venant in 1864 and proved rigorously by Beltrami in 1886.
The electric dipole moment is a measure of the separation of positive and negative electrical charges within a system, that is, a measure of the system's overall polarity. The SI unit for electric dipole moment is the coulomb-meter (C⋅m). The debye (D) is another unit of measurement used in atomic physics and chemistry.
In optics, the Ewald–Oseen extinction theorem, sometimes referred to as just the extinction theorem, is a theorem that underlies the common understanding of scattering. It is named after Paul Peter Ewald and Carl Wilhelm Oseen, who proved the theorem in crystalline and isotropic media, respectively, in 1916 and 1915. Originally, the theorem applied to scattering by an isotropic dielectric objects in free space. The scope of the theorem was greatly extended to encompass a wide variety of bianisotropic media.