In mathematics, the Munn semigroup is the inverse semigroup of isomorphisms between principal ideals of a semilattice (a commutative semigroup of idempotents). Munn semigroups are named for the Scottish mathematician Walter Douglas Munn (1929–2008). [1]
In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative binary operation.
In mathematics, a join-semilattice is a partially ordered set that has a join for any nonempty finite subset. Dually, a meet-semilattice is a partially ordered set which has a meet for any nonempty finite subset. Every join-semilattice is a meet-semilattice in the inverse order and vice versa.
Let be a semilattice.
1) For all e in E, we define Ee: = {i ∈ E : i ≤ e} which is a principal ideal of E.
In the mathematical field of ring theory, a principal ideal is an ideal in a ring that is generated by a single element of through multiplication by every element of . The term also has another, similar meaning in order theory, where it refers to an (order) ideal in a poset generated by a single element , which is to say the set of all elements less than or equal to in .
2) For all e, f in E, we define Te,f as the set of isomorphisms of Ee onto Ef.
3) The Munn semigroup of the semilattice E is defined as: TE := { Te,f : (e, f) ∈ U }.
The semigroup's operation is composition of partial mappings. In fact, we can observe that TE ⊆ IE where IE is the symmetric inverse semigroup because all isomorphisms are partial one-one maps from subsets of E onto subsets of E.
In mathematics, a partial function from X to Y is a function f: X′ → Y, for some subset X′ of X. It generalizes the concept of a function f : X → Y by not forcing f to map every element of X to an element of Y. If X′ = X, then f is called a total function for emphasizing that its domain is not a proper subset of X. Partial functions are often used when the exact domain, X, is not known. In real and complex analysis, a partial function is generally called simply a function.
In abstract algebra, the set of all partial bijections on a set X forms an inverse semigroup, called the symmetric inverse semigroup on X. The conventional notation for the symmetric inverse semigroup on a set X is or In general is not commutative.
The idempotents of the Munn semigroup are the identity maps 1Ee.
For every semilattice , the semilattice of idempotents of is isomorphic to E.
Let . Then is a semilattice under the usual ordering of the natural numbers (). The principal ideals of are then for all . So, the principal ideals and are isomorphic if and only if .
Thus = {} where is the identity map from En to itself, and if . The semigroup product of and is . In this example,
In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type. The word homomorphism comes from the ancient Greek language: ὁμός (homos) meaning "same" and μορφή (morphe) meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same".
In abstract algebra, a branch of mathematics, a monoid is an algebraic structure with a single associative binary operation and an identity element.
In mathematics, a complete lattice is a partially ordered set in which all subsets have both a supremum (join) and an infimum (meet). Complete lattices appear in many applications in mathematics and computer science. Being a special instance of lattices, they are studied both in order theory and universal algebra.
In abstract algebra, the idea of an inverse element generalises concepts of a negation in relation to addition, and a reciprocal in relation to multiplication. The intuition is of an element that can 'undo' the effect of combination with another given element. While the precise definition of an inverse element varies depending on the algebraic structure involved, these definitions coincide in a group.
In the various branches of mathematics that fall under the heading of abstract algebra, the kernel of a homomorphism measures the degree to which the homomorphism fails to be injective. An important special case is the kernel of a linear map. The kernel of a matrix, also called the null space, is the kernel of the linear map defined by the matrix.
In mathematics, a ring is one of the fundamental algebraic structures used in abstract algebra. It consists of a set equipped with two binary operations that generalize the arithmetic operations of addition and multiplication. Through this generalization, theorems from arithmetic are extended to non-numerical objects such as polynomials, series, matrices and functions.
In abstract algebra, the free monoid on a set is the monoid whose elements are all the finite sequences of zero or more elements from that set, with string concatenation as the monoid operation and with the unique sequence of zero elements, often called the empty string and denoted by ε or λ, as the identity element. The free monoid on a set A is usually denoted A∗. The free semigroup on A is the subsemigroup of A∗ containing all elements except the empty string. It is usually denoted A+.
In mathematical order theory, an ideal is a special subset of a partially ordered set (poset). Although this term historically was derived from the notion of a ring ideal of abstract algebra, it has subsequently been generalized to a different notion. Ideals are of great importance for many constructions in order and lattice theory.
In mathematics, localization of a category consists of adding to a category inverse morphisms for some collection of morphisms, constraining them to become isomorphisms. This is formally similar to the process of localization of a ring; it in general makes objects isomorphic that were not so before. In homotopy theory, for example, there are many examples of mappings that are invertible up to homotopy; and so large classes of homotopy equivalent spaces. Calculus of fractions is another name for working in a localized category.
In mathematics, Green's relations are five equivalence relations that characterise the elements of a semigroup in terms of the principal ideals they generate. The relations are named for James Alexander Green, who introduced them in a paper of 1951. John Mackintosh Howie, a prominent semigroup theorist, described this work as "so all-pervading that, on encountering a new semigroup, almost the first question one asks is 'What are the Green relations like?'". The relations are useful for understanding the nature of divisibility in a semigroup; they are also valid for groups, but in this case tell us nothing useful, because groups always have divisibility.
In mathematics, the bicyclic semigroup is an algebraic object important for the structure theory of semigroups. Although it is in fact a monoid, it is usually referred to as simply a semigroup. It is perhaps most easily understood as the syntactic monoid describing the Dyck language of balanced pairs of parentheses. Thus, it finds common applications in combinatorics, such as describing binary trees and associative algebras.
In group theory, an inverse semigroupS is a semigroup in which every element x in S has a unique inversey in S in the sense that x = xyx and y = yxy, i.e. a regular semigroup in which every element has a unique inverse. Inverse semigroups appear in a range of contexts; for example, they can be employed in the study of partial symmetries.
In mathematics, a band is a semigroup in which every element is idempotent. Bands were first studied and named by A. H. Clifford (1954); the lattice of varieties of bands was described independently in the early 1970s by Biryukov, Fennemore and Gerhard. Semilattices, left-zero bands, right-zero bands, rectangular bands, normal bands, left-regular bands, right-regular bands and regular bands, specific subclasses of bands which lie near the bottom of this lattice, are of particular interest and are briefly described below.
In mathematics, a regular semigroup is a semigroup S in which every element is regular, i.e., for each element a, there exists an element x such that axa = a. Regular semigroups are one of the most-studied classes of semigroups, and their structure is particularly amenable to study via Green's relations.
A biordered set ("boset") is a mathematical object that occurs in the description of the structure of the set of idempotents in a semigroup. The concept and the terminology were developed by K S S Nambooripad in the early 1970s. The defining properties of a biordered set are expressed in terms of two quasiorders defined on the set and hence the name biordered set. Patrick Jordan, while a master's student at University of Sydney, introduced in 2002 the term boset as an abbreviation of biordered set.
In mathematics, particularly in abstract algebra, a semigroup with involution or a *-semigroup is a semigroup equipped with an involutive anti-automorphism, which—roughly speaking—brings it closer to a group because this involution, considered as unary operator, exhibits certain fundamental properties of the operation of taking the inverse in a group: uniqueness, double application "cancelling itself out", and the same interaction law with the binary operation as in the case of the group inverse. It is thus not a surprise that any group is a semigroup with involution. However, there are significant natural examples of semigroups with involution that are not groups.
In mathematics, a semigroup with two elements is a semigroup for which the cardinality of the underlying set is two. There are exactly five distinct nonisomorphic semigroups having two elements:
In mathematics, Brandt semigroups are completely 0-simple inverse semigroups. In other words, they are semigroups without proper ideals and which are also inverse semigroups. They are built in the same way as completely 0-simple semigroups: