NBR2

Last updated
neighbor of BRCA1 gene 2
Identifiers
SymbolNBR2
NCBI gene 10230
HGNC 20691
RefSeq NM_005821
Other data
Locus Chr. 17 q21

NBR2 is a gene best known for its location near the breast cancer associated gene BRCA1. [1] Like BRCA1, NBR2 has been a subject of research, [2] but links to breast cancer are currently inconclusive.

NBR2 recently was identified as a glucose starvation-induced long non-coding RNA. NBR2 interacts with AMP-activated protein kinase (AMPK), a critical energy sensor in most eukaryotic cells, and promotes AMPK function to mediate energy stress response. Knockdown of NBR2 attenuates energy stress-induced AMPK activation, resulting in unchecked cell cycling, altered apoptosis/autophagy response, and increased tumour development in vivo. [3] [4] It is now appreciated that NBR2, a former junk gene, plays critical roles in tumor suppression. [5]

Related Research Articles

<span class="mw-page-title-main">Adenosine monophosphate</span> Chemical compound

Adenosine monophosphate (AMP), also known as 5'-adenylic acid, is a nucleotide. AMP consists of a phosphate group, the sugar ribose, and the nucleobase adenine; it is an ester of phosphoric acid and the nucleoside adenosine. As a substituent it takes the form of the prefix adenylyl-.

<span class="mw-page-title-main">Transcription (biology)</span> Process of copying a segment of DNA into RNA

Transcription is the process of copying a segment of DNA into RNA. The segments of DNA transcribed into RNA molecules that can encode proteins are said to produce messenger RNA (mRNA). Other segments of DNA are copied into RNA molecules called non-coding RNAs (ncRNAs). mRNA comprises only 1-3% of total RNA samples. Less than 2% of the human genome can be transcribed into mRNA, while at least 80% of mammalian genomic DNA can be actively transcribed, with the majority of this 80% considered to be ncRNA.

<span class="mw-page-title-main">BRCA1</span> Gene known for its role in breast cancer

Breast cancer type 1 susceptibility protein is a protein that in humans is encoded by the BRCA1 gene. Orthologs are common in other vertebrate species, whereas invertebrate genomes may encode a more distantly related gene. BRCA1 is a human tumor suppressor gene and is responsible for repairing DNA.

<span class="mw-page-title-main">AMP-activated protein kinase</span> Class of enzymes

5' AMP-activated protein kinase or AMPK or 5' adenosine monophosphate-activated protein kinase is an enzyme that plays a role in cellular energy homeostasis, largely to activate glucose and fatty acid uptake and oxidation when cellular energy is low. It belongs to a highly conserved eukaryotic protein family and its orthologues are SNF1 in yeast, and SnRK1 in plants. It consists of three proteins (subunits) that together make a functional enzyme, conserved from yeast to humans. It is expressed in a number of tissues, including the liver, brain, and skeletal muscle. In response to binding AMP and ADP, the net effect of AMPK activation is stimulation of hepatic fatty acid oxidation, ketogenesis, stimulation of skeletal muscle fatty acid oxidation and glucose uptake, inhibition of cholesterol synthesis, lipogenesis, and triglyceride synthesis, inhibition of adipocyte lipogenesis, inhibition of adipocyte lipolysis, and modulation of insulin secretion by pancreatic β-cells.

<span class="mw-page-title-main">Regulation of gene expression</span> Modifying mechanisms used by cells to increase or decrease the production of specific gene products

Regulation of gene expression, or gene regulation, includes a wide range of mechanisms that are used by cells to increase or decrease the production of specific gene products. Sophisticated programs of gene expression are widely observed in biology, for example to trigger developmental pathways, respond to environmental stimuli, or adapt to new food sources. Virtually any step of gene expression can be modulated, from transcriptional initiation, to RNA processing, and to the post-translational modification of a protein. Often, one gene regulator controls another, and so on, in a gene regulatory network.

<span class="mw-page-title-main">Thioredoxin</span>

Thioredoxin is a class of small redox proteins known to be present in all organisms. It plays a role in many important biological processes, including redox signaling. In humans, thioredoxins are encoded by TXN and TXN2 genes. Loss-of-function mutation of either of the two human thioredoxin genes is lethal at the four-cell stage of the developing embryo. Although not entirely understood, thioredoxin is linked to medicine through their response to reactive oxygen species (ROS). In plants, thioredoxins regulate a spectrum of critical functions, ranging from photosynthesis to growth, flowering and the development and germination of seeds. Thioredoxins play a role in cell-to-cell communication.

<span class="mw-page-title-main">Nucleoside-diphosphate kinase</span>

Nucleoside-diphosphate kinases are enzymes that catalyze the exchange of terminal phosphate between different nucleoside diphosphates (NDP) and triphosphates (NTP) in a reversible manner to produce nucleotide triphosphates. Many NDP serve as acceptor while NTP are donors of phosphate group. The general reaction via ping-pong mechanism is as follows: XDP + YTP ←→ XTP + YDP. NDPK activities maintain an equilibrium between the concentrations of different nucleoside triphosphates such as, for example, when guanosine triphosphate (GTP) produced in the citric acid (Krebs) cycle is converted to adenosine triphosphate (ATP). Other activities include cell proliferation, differentiation and development, signal transduction, G protein-coupled receptor, endocytosis, and gene expression.

<span class="mw-page-title-main">Angiogenin</span> Protein-coding gene in the species Homo sapiens

Angiogenin (ANG) also known as ribonuclease 5 is a small 123 amino acid protein that in humans is encoded by the ANG gene. Angiogenin is a potent stimulator of new blood vessels through the process of angiogenesis. Ang hydrolyzes cellular RNA, resulting in modulated levels of protein synthesis and interacts with DNA causing a promoter-like increase in the expression of rRNA. Ang is associated with cancer and neurological disease through angiogenesis and through activating gene expression that suppresses apoptosis.

<span class="mw-page-title-main">RAD51</span>

DNA repair protein RAD51 homolog 1 is a protein encoded by the gene RAD51. The enzyme encoded by this gene is a member of the RAD51 protein family which assists in repair of DNA double strand breaks. RAD51 family members are homologous to the bacterial RecA, Archaeal RadA and yeast Rad51. The protein is highly conserved in most eukaryotes, from yeast to humans.

<span class="mw-page-title-main">POLR2A</span> Protein-coding gene in the species Homo sapiens

DNA-directed RNA polymerase II subunit RPB1, also known as RPB1, is an enzyme that in humans is encoded by the POLR2A gene.

<span class="mw-page-title-main">ATF1</span> Protein-coding gene in the species Homo sapiens

Cyclic AMP-dependent transcription factor ATF-1 is a protein that in humans is encoded by the ATF1 gene.

<span class="mw-page-title-main">MAP3K3</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase kinase kinase 3 is an enzyme that in humans is encoded by the MAP3K3 gene, which is located on the long arm of chromosome 17 (17q23.3).

<span class="mw-page-title-main">STK11</span> Protein-coding gene in the species Homo sapiens

Serine/threonine kinase 11 (STK11) also known as liver kinase B1 (LKB1) or renal carcinoma antigen NY-REN-19 is a protein kinase that in humans is encoded by the STK11 gene.

<span class="mw-page-title-main">Sirtuin 1</span> Protein

Sirtuin 1, also known as NAD-dependent deacetylase sirtuin-1, is a protein that in humans is encoded by the SIRT1 gene.

<span class="mw-page-title-main">ULK1</span> Protein-coding gene in the species Homo sapiens

ULK1 is an enzyme that in humans is encoded by the ULK1 gene.

<span class="mw-page-title-main">Long non-coding RNA</span> Non-protein coding transcripts longer than 200 nucleotides

Long non-coding RNAs are a type of RNA, generally defined as transcripts more than 200 nucleotides that are not translated into protein. This arbitrary limit distinguishes long ncRNAs from small non-coding RNAs, such as microRNAs (miRNAs), small interfering RNAs (siRNAs), Piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), and other short RNAs. Long intervening/intergenic noncoding RNAs (lincRNAs) are sequences of lncRNA which do not overlap protein-coding genes.

Post-transcriptional regulation is the control of gene expression at the RNA level. It occurs once the RNA polymerase has been attached to the gene's promoter and is synthesizing the nucleotide sequence. Therefore, as the name indicates, it occurs between the transcription phase and the translation phase of gene expression. These controls are critical for the regulation of many genes across human tissues. It also plays a big role in cell physiology, being implicated in pathologies such as cancer and neurodegenerative diseases.

<span class="mw-page-title-main">HOXA11-AS1</span> Long non-coding RNA from the antisense strand in the homeobox A (HOXA gene).

HOXA11-AS lncRNA is a long non-coding RNA from the antisense strand in the homeobox A. The HOX gene contains four clusters. The sense strand of the HOXA gene codes for proteins. Alternative names for HOXA11-AS lncRNA are: HOXA-AS5, HOXA11S, HOXA11-AS1, HOXA11AS, or NCRNA00076. This gene is 3,885 nucleotides long and resides at chromosome 7 (7p15.2) and is transcribed from an independent gene promoter. Being a lncRNA, it is longer than 200 nucleotides in length, in contrast to regular non-coding RNAs.

mTORC1 Protein complex

mTORC1, also known as mammalian target of rapamycin complex 1 or mechanistic target of rapamycin complex 1, is a protein complex that functions as a nutrient/energy/redox sensor and controls protein synthesis.

<span class="mw-page-title-main">MIR22HG</span> Non-coding RNA in the species Homo sapiens

MIR22HG, also known as C17orf91, MGC14376, MIRN22, hsa-mir-22, and miR-22 is a human gene that encodes a noncoding RNA (ncRNA).This RNA molecule is not translated into a protein but nonetheless may have important functions.

References

  1. Xu CF, Brown MA, Nicolai H, Chambers JA, Griffiths BL, Solomon E (1997). "Isolation and characterisation of the NBR2 gene which lies head to head with the human BRCA1 gene". Hum. Mol. Genet. 6 (7): 1057–62. doi: 10.1093/hmg/6.7.1057 . PMID   9215675.
  2. Auriol E, Billard LM, Magdinier F, Dante R (2005). "Specific binding of the methyl binding domain protein 2 at the BRCA1-NBR2 locus". Nucleic Acids Res. 33 (13): 4243–54. doi:10.1093/nar/gki729. PMC   1181861 . PMID   16052033.
  3. Liu, Xiaowen; Xiao, Zhen-Dong; Han, Leng; Zhang, Jiexin; Lee, Szu-Wei; Wang, Wenqi; Lee, Hyemin; Zhuang, Li; Chen, Junjie (2016-04-01). "LncRNA NBR2 engages a metabolic checkpoint by regulating AMPK under energy stress". Nature Cell Biology. 18 (4): 431–442. doi:10.1038/ncb3328. ISSN   1476-4679. PMC   4814347 . PMID   26999735.
  4. Liu, Xiaowen; Xiao, Zhen-Dong; Gan, Boyi (2016-08-02). "An lncRNA switch for AMPK activation". Cell Cycle. 15 (15): 1948–1949. doi:10.1080/15384101.2016.1184515. ISSN   1551-4005. PMC   4968966 . PMID   27152502.
  5. Xiao, Zhen-Dong; Liu, Xiaowen; Zhuang, Li; Gan, Boyi (2016-07-03). "NBR2: A former junk gene emerges as a key player in tumor suppression". Molecular & Cellular Oncology. 3 (4): e1187322. doi:10.1080/23723556.2016.1187322. PMC   4972102 . PMID   27652330.