Nanoart

Last updated
Colorized scanning electron microscopy (SEM) image of pollen from a variety of common plants: sunflower, morning glory, hollyhock, lily, primrose and castor bean Misc pollen colorized.jpg
Colorized scanning electron microscopy (SEM) image of pollen from a variety of common plants: sunflower, morning glory, hollyhock, lily, primrose and castor bean
Colorized SEM image of a rust mite Rust Mite, Aceria anthocoptes.jpg
Colorized SEM image of a rust mite

NanoArt is a novel art discipline related to science and technology. It depicts natural or synthetic structures with features sized at the nanometer scale, which are observed by electron or scanning probe microscopy techniques in scientific laboratories. The recorded two or three dimensional images and movies are processed for artistic appeal and presented to the general audience.

One of the aims of NanoArt is to familiarize people with nanoscale objects and advances in their synthesis and manipulation. NanoArt has been presented at traditional art exhibitions around the world. Besides, online competitions have been launched in the 2000s such as the “NANO” 2003 show at Los Angeles County Museum of Art and “Nanomandala”, the 2004 and 2005 installations in New York and Rome by Victoria Vesna and James Gimzewski, [1] and the regular "Science as Art" section launched at the 2006 Materials Research Society Meeting. [2] [3]

A characteristic example of nanoart is A Boy and His Atom , a one-minute stop-motion animated film created in 2012 by IBM Research from 242 images sized by 45×25 nm, which were recorded with a scanning tunneling microscope. The movie tells the story of a boy and a wayward atom who meet and become friends. The film was accepted into the Tribeca Online Film Festival and shown at the New York Tech Meet-up and the World Science Festival.

Earlier in 2007 a book Teeny Ted from Turnip Town was created at the Simon Fraser University in Canada using a gallium-ion beam with a diameter of ~7 nanometers. The book contains 30 silicon-based pages sized by 0.07×0.10 mm; it was published in 100 copies and has an ISBN.

In 2015, Jonty Hurwitz pioneered a new technique for creating nanosculpture using multiphoton lithography and photogrammetry. His work Trust was prepared in collaboration with Karlsruhe Institute of Technology and set a Guinness World Record as the "Smallest Sculpture of a Human Form". [4]

Related Research Articles

<span class="mw-page-title-main">Nanotechnology</span> Field of science involving control of matter on atomic and (supra)molecular scales

Nanotechnology was defined by the National Nanotechnology Initiative as the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm). At this scale, commonly known as the nanoscale, surface area and quantum mechanical effects become important in describing properties of matter. The definition of nanotechnology is inclusive of all types of research and technologies that deal with these special properties. It is therefore common to see the plural form "nanotechnologies" as well as "nanoscale technologies" to refer to the broad range of research and applications whose common trait is size. An earlier description of nanotechnology referred to the particular technological goal of precisely manipulating atoms and molecules for fabrication of macroscale products, also now referred to as molecular nanotechnology.

Nanoengineering is the practice of engineering on the nanoscale. It derives its name from the nanometre, a unit of measurement equalling one billionth of a meter.

Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. SPM was founded in 1981, with the invention of the scanning tunneling microscope, an instrument for imaging surfaces at the atomic level. The first successful scanning tunneling microscope experiment was done by Gerd Binnig and Heinrich Rohrer. The key to their success was using a feedback loop to regulate gap distance between the sample and the probe.

<span class="mw-page-title-main">James Gimzewski</span> Scottish physicist of Polish descent

James Kazimierz Gimzewski FRS FREng FInstP is a Scottish physicist of Polish descent who pioneered research on electrical contacts with single atoms and molecules and light emission using scanning tunneling microscopy (STM).

A nanoruler is a tool or a method used within the subfield of "nanometrology" to achieve precise control and measurements at the nanoscale. Measurements of extremely tiny proportions require more complicated procedures, such as manipulating the properties of light (plasmonic) or DNA to determine distances. At the nanoscale, materials and devices exhibit unique properties that can significantly influence their behavior. In fields like electronics, medicine, and biotechnology, where advancements come from manipulating matter at the atomic and molecular levels, nanoscale measurements become essential.

Nanolithography (NL) is a growing field of techniques within nanotechnology dealing with the engineering of nanometer-scale structures on various materials.

<span class="mw-page-title-main">Focused ion beam</span> Device

Focused ion beam, also known as FIB, is a technique used particularly in the semiconductor industry, materials science and increasingly in the biological field for site-specific analysis, deposition, and ablation of materials. A FIB setup is a scientific instrument that resembles a scanning electron microscope (SEM). However, while the SEM uses a focused beam of electrons to image the sample in the chamber, a FIB setup uses a focused beam of ions instead. FIB can also be incorporated in a system with both electron and ion beam columns, allowing the same feature to be investigated using either of the beams. FIB should not be confused with using a beam of focused ions for direct write lithography. These are generally quite different systems where the material is modified by other mechanisms.

<span class="mw-page-title-main">Near-field scanning optical microscope</span>

Near-field scanning optical microscopy (NSOM) or scanning near-field optical microscopy (SNOM) is a microscopy technique for nanostructure investigation that breaks the far field resolution limit by exploiting the properties of evanescent waves. In SNOM, the excitation laser light is focused through an aperture with a diameter smaller than the excitation wavelength, resulting in an evanescent field on the far side of the aperture. When the sample is scanned at a small distance below the aperture, the optical resolution of transmitted or reflected light is limited only by the diameter of the aperture. In particular, lateral resolution of 6 nm and vertical resolution of 2–5 nm have been demonstrated.

Nanophotonics or nano-optics is the study of the behavior of light on the nanometer scale, and of the interaction of nanometer-scale objects with light. It is a branch of optics, optical engineering, electrical engineering, and nanotechnology. It often involves dielectric structures such as nanoantennas, or metallic components, which can transport and focus light via surface plasmon polaritons.

<span class="mw-page-title-main">Nanochemistry</span> Combination of chemistry and nanoscience

Nanochemistry is an emerging sub-discipline of the chemical and material sciences that deals with the development of new methods for creating nanoscale materials. The term "nanochemistry" was first used by Ozin in 1992 as 'the uses of chemical synthesis to reproducibly afford nanomaterials from the atom "up", contrary to the nanoengineering and nanophysics approach that operates from the bulk "down"'. Nanochemistry focuses on solid-state chemistry that emphasizes synthesis of building blocks that are dependent on size, surface, shape, and defect properties, rather than the actual production of matter. Atomic and molecular properties mainly deal with the degrees of freedom of atoms in the periodic table. However, nanochemistry introduced other degrees of freedom that controls material's behaviors by transformation into solutions. Nanoscale objects exhibit novel material properties, largely as a consequence of their finite small size. Several chemical modifications on nanometer-scaled structures approve size dependent effects.

Electron-beam-induced deposition (EBID) is a process of decomposing gaseous molecules by an electron beam leading to deposition of non-volatile fragments onto a nearby substrate. The electron beam is usually provided by a scanning electron microscope, which results in high spatial accuracy and the possibility to produce free-standing, three-dimensional structures.

<span class="mw-page-title-main">Nanometrology</span> Metrology of nanomaterials

Nanometrology is a subfield of metrology, concerned with the science of measurement at the nanoscale level. Nanometrology has a crucial role in order to produce nanomaterials and devices with a high degree of accuracy and reliability in nanomanufacturing.

The following outline is provided as an overview of and topical guide to nanotechnology:

<span class="mw-page-title-main">Local oxidation nanolithography</span>

Local oxidation nanolithography (LON) is a tip-based nanofabrication method. It is based on the spatial confinement on an oxidation reaction under the sharp tip of an atomic force microscope.

A recurrence tracking microscope (RTM) is a microscope that is based on the quantum recurrence phenomenon of an atomic wave packet. It is used to investigate the nano-structure on a surface.

<span class="mw-page-title-main">Nanochannel glass materials</span> Novel mask technology

Nanochannel glass materials are an experimental mask technology that is an alternate method for fabricating nanostructures, although optical lithography is the predominant patterning technique.

<i>A Boy and His Atom</i> Stop-motion short movie created on an atomic scale

A Boy and His Atom is a 2013 stop-motion animated short film released on YouTube by IBM Research. One minute in length, it was made by moving carbon monoxide molecules with a scanning tunneling microscope, a device that magnifies them 100 million times. These two-atom molecules were moved to create images, which were then saved as individual frames to make the film. The movie was recognized by the Guinness Book of World Records as the World's Smallest Stop-Motion Film in 2013.

<span class="mw-page-title-main">Victoria Vesna</span>

Victoria Vesna is a professor and digital media artist. She is known for her feminist video, computer and internet art and has been active since the early 1980s. Along with collaborator Jim Gimzewski she is thought to have created one of the first interactive artworks related to nanotechnology and defines her art practice as experimental research.

A probe tip is an instrument used in scanning probe microscopes (SPMs) to scan the surface of a sample and make nano-scale images of surfaces and structures. The probe tip is mounted on the end of a cantilever and can be as sharp as a single atom. In microscopy, probe tip geometry and the composition of both the tip and the surface being probed directly affect resolution and imaging quality. Tip size and shape are extremely important in monitoring and detecting interactions between surfaces. SPMs can precisely measure electrostatic forces, magnetic forces, chemical bonding, Van der Waals forces, and capillary forces. SPMs can also reveal the morphology and topography of a surface.

This glossary of nanotechnology is a list of definitions of terms and concepts relevant to nanotechnology, its sub-disciplines, and related fields.

References

  1. Vesna, V. & Gimzewski, J. (2011). "At the intersection of art and science: NANO". Los Angeles County Museum of Art.
  2. Science as Art. mrs.org
  3. Tomczyk, Michael (2014). NanoInnovation: What Every Manager Needs to Know. John Wiley & Sons. pp. 115–. ISBN   978-3-527-32672-3.
  4. Yetisen, A. K.; Coskun, A. F.; England, G.; Cho, S.; Butt, H.; Hurwitz, J.; Kolle, M.; Khademhosseini, A.; Hart, A. J.; Folch, A.; et al. (2016). "Art on the Nanoscale and Beyond" (PDF). Advanced Materials. 28 (9): 1724–1742. doi:10.1002/adma.201502382. PMID   26671704.